Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
669
result(s) for
"INTERSTITIAL CELLS OF CAJAL"
Sort by:
TELOCYTES – a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal‐Like Cells (ICLC) to TELOCYTES
by
Faussone‐Pellegrini, Maria‐Simonetta
,
Popescu, L. M.
in
Animals
,
Blood vessels
,
Cardiomyocytes
2010
Ramon y Cajal discovered a particular cell type in the gut, which he named ‘interstitial neurons’ more that 100 years ago. In the early 1970s, electron microscopy/electron microscope (EM) studies showed that indeed a special interstitial cell type corresponding to the cells discovered by Cajal is localized in the gut muscle coat, but it became obvious that they were not neurons. Consequently, they were renamed ‘interstitial cells of Cajal’ (ICC) and considered to be pace‐makers for gut motility. For the past 10 years many groups were interested in whether or not ICC are present outside the gastrointestinal tract, and indeed, peculiar interstitial cells were found in: upper and lower urinary tracts, blood vessels, pancreas, male and female reproductive tracts, mammary gland, placenta, and, recently, in the heart as well as in the gut. Such cells, now mostly known as interstitial Cajal‐like cells (ICLC), were given different and confusing names. Moreover, ICLC are only apparently similar to canonical ICC. In fact, EM and cell cultures revealed very particular features of ICLC, which unequivocally distinguishes them from ICC and all other interstitial cells: the presence of 2–5 cell body prolongations that are very thin (less than 0.2 μm, under resolving power of light microscopy), extremely long (tens to hundreds of μm), with a moniliform aspect (many dilations along), as well as caveolae. Given the unique dimensions of these prolongations (very long and very thin) and to avoid further confusion with other interstitial cell types (e.g. fibroblast, fibrocyte, fibroblast‐like cells, mesenchymal cells), we are proposing the term TELOCYTES for them, and TELOPODES for their prolongations, by using the Greek affix ‘telos’.
Journal Article
Total Flavonoids of Aurantii Fructus Immaturus Regulate miR-5100 to Improve Constipation by Targeting Fzd2 to Alleviate Calcium Balance and Autophagy in Interstitial Cells of Cajal
2024
Aurantii FructusImmaturus total flavonoids (AFIF) is the main effective fraction extracted from AFI, which has a good effect on promoting gastrointestinal motility. This study aimed to investigate AFIF which regulates miR-5100 to improve constipation symptoms in mice by targeting Frizzled-2 (Fzd2) to alleviate interstitial cells of Cajal (ICCs) calcium ion balance and autophagy apoptosis. The constipated mouse model was induced by an antibiotic suspension, and then treated with AFIF. RNA-seq sequencing, luciferase assay, immunofluorescence staining, transmission electron microscopy, ELISA, flow cytometry, quantitative polymerase chain reaction (PCR), and Western blot were applied in this study. The results showed that AFIF improved constipation symptoms in antibiotic-induced constipated mice, and decreased the autophagy-related protein Beclin1 levels and the LC3-II/I ratio in ICCs. miR-5100 and its target gene Fzd2 were screened as key miRNAs and regulator associated with autophagy. Downregulation of miR-5100 caused increased expression of Fzd2, decreased proliferation activity of ICCs, increased apoptotic cells, and enhanced calcium ion release and autophagy signals. After AFIF treatment, miR-5100 expression was upregulated and Fzd2 was downregulated, while autophagy-related protein levels and calcium ion concentration decreased. Furthermore, AFIF increased the levels of SP, 5-HT, and VIP, and increased the expression of PGP9.5, Sy, and Cx43, which alleviated constipation by improving the integrity of the enteric nervous system network. In conclusion, AFIF could attenuate constipation symptoms by upregulating the expression of miR-5100 and targeting inhibition of Fzd2, alleviating calcium overload and autophagic death of ICCs, regulating the content of neurotransmitters, and enhancing the integrity of the enteric nervous system network.
Journal Article
Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation
by
Latif, Najma
,
Quillon, Alfred
,
Sarathchandra, Padmini
in
Actins - metabolism
,
Adolescent
,
Adult
2015
Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10 ng/ml), insulin (50 ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering.
Journal Article
Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility
2020
Millions of patients worldwide suffer from gastrointestinal (GI) motility disorders such as gastroparesis. These disorders typically include debilitating symptoms, such as chronic nausea and vomiting. As no cures are currently available, clinical care is limited to symptom management, while the underlying causes of impaired GI motility remain unaddressed. The efficient movement of contents through the GI tract is facilitated by peristalsis. These rhythmic slow waves of GI muscle contraction are mediated by several cell types, including smooth muscle cells, enteric neurons, telocytes, and specialised gut pacemaker cells called interstitial cells of Cajal (ICC). As ICC dysfunction or loss has been implicated in several GI motility disorders, ICC represent a potentially valuable therapeutic target. Due to their availability, murine ICC have been extensively studied at the molecular level using both normal and diseased GI tissue. In contrast, relatively little is known about the biology of human ICC or their involvement in GI disease pathogenesis. Here, we demonstrate human gastric tissue as a source of primary human cells with ICC phenotype. Further characterisation of these cells will provide new insights into human GI biology, with the potential for developing novel therapies to address the fundamental causes of GI dysmotility.
Journal Article
Telocytes and interstitial cells of Cajal in the biliary system
2018
A novel type of interstitial tissue cells in the biliary tree termed telocytes (TCs), formerly known as interstitial Cajal‐like cells (ICLCs), exhibits very particular features which unequivocally distinguish these cells from interstitial cells of Cajal (ICCs) and other interstitial cell types. Current research substantiates the existence of TCs and ICCs in the biliary system (gallbladder, extrahepatic bile duct, cystic duct, common bile duct and sphincter of Oddi). Here, we review the distribution, morphology and ultrastructure of TCs and ICCs in the biliary tree, with emphasis on their presumptive roles in physiological and pathophysiological processes.
Journal Article
The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy
2017
Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC). Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.
Journal Article
Telocytes in Human Term Placenta: Morphology and Phenotype
by
Suciu, Laura
,
Hinescu, Mihail E.
,
Faussone-Pellegrini, Maria-Simonetta
in
Actins - analysis
,
Antigens, CD34 - analysis
,
Caveolae - ultrastructure
2010
In the last few years, a new cell type – interstitial Cajal-like cell (ICLC) – has been described in digestive and extra-digestive organs. The name has recently been changed to telocytes (TC) and their typical thin, long processes have been named telopodes (TP). To support the hypothesis that TC may also be present in human placenta and add to the information already available, we provide evidence on the ultrastructure, immunophenotype, distribution, and interactions with the surrounding stromal cells of TC in the villous core of human term placenta. We used phase-contrast microscopy, light microscopy of semithin sections, transmission electron microscopy, immunohistochemistry, and immunofluorescence of tissue sections or cell cultures, following a pre-established diagnostic algorithm. Transmission electron microscopy showed cells resembling TC, most (∼76%) having 2–3 very thin, longprocesses (tens to hundreds of micrometers), with an uneven calibre(≤0.5 µm thick) and typical branching pattern. The dilations of processes accommodate caveolae, endoplasmic reticulum cisternae, and mitochondria. These TC have close contacts with perivascular SMC in stem villi. In situ, similar cells are positive for c-kit, CD34, vimentin, caveolin-1, vascular endothelial growth factor (VEGF), and inducible nitric oxide synathase (iNOS). The c-kit-positive cells inconsistently co-express CD34, CD44, αSMA, S100, neuron-specific enolase, and nestin. Among cells with a morphologic TC profile in cell cultures, about 13% co-express c-kit, vimentin, and caveolin-1; 70% of the c-kit-positive cells co-express CD34 and 12% co-express iNOS or VEGF. In conclusion, this study confirms the presence of TC in human term placenta and provides their ultrastructural and immunophenotypic characterization.
Journal Article
Intestinal proinflammatory macrophages induce a phenotypic switch in interstitial cells of Cajal
2020
Interstitial cells of Cajal (ICCs) are pacemaker cells in the intestine, and their function can be compromised by loss of C-KIT expression. Macrophage activation has been identified in intestine affected by Hirschsprung disease-associated enterocolitis (HAEC). In this study, we examined proinflammatory macrophage activation and explored the mechanisms by which it downregulates C-KIT expression in ICCs in colon affected by HAEC. We found that macrophage activation and TNF-α production were dramatically increased in the proximal dilated colon of HAEC patients and 3-week-old Ednrb-/- mice. Moreover, ICCs lost their C-KIT+ phenotype in the dilated colon, resulting in damaged pacemaker function and intestinal dysmotility. However, macrophage depletion or TNF-α neutralization led to recovery of ICC phenotype and restored their pacemaker function. In isolated ICCs, TNF-α-mediated phosphorylation of p65 induced overexpression of microRNA-221 (miR-221), resulting in suppression of C-KIT expression and pacemaker currents. We also identified a TNF-α/NF-κB/miR-221 pathway that downregulated C-KIT expression in ICCs in the colon affected by HAEC. These findings suggest the important roles of proinflammatory macrophage activation in a phenotypic switch of ICCs, representing a promising therapeutic target for HAEC.
Journal Article
Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators
by
Ohta, Keisuke
,
Nguyen, Michael J.
,
Mitsui, Retsu
in
Animals
,
Antibodies
,
Biomedical and Life Sciences
2017
Typical and atypical smooth muscle cells (TSMCs and ASMCs, respectively) and interstitial cells (ICs) within the pacemaker region of the mouse renal pelvis were examined using focused ion beam scanning electron (FIB SEM) tomography, immunohistochemistry and Ca
2+
imaging. Individual cells within 500–900 electron micrograph stacks were volume rendered and associations with their neighbours established. ‘Ribbon-shaped’, Ano1 Cl
−
channel immuno-reactive ICs were present in the adventitia and the sub-urothelial space adjacent to the TSMC layer. ICs in the proximal renal pelvis were immuno-reactive to antibodies for Ca
V
3.1 and hyperpolarization-activated cation nucleotide-gated isoform 3 (HCN3) channel sub-units, while basal-epithelial cells (BECs) were intensely immuno-reactive to Kv7.5 channel antibodies. Adventitial to the TSMC layer, ASMCs formed close appositions with TSMCs and ICs. The T-type Ca
2+
channel blocker, Ni
2+
(10–200 μM), reduced the frequency while the L-type Ca
2+
channel blocker (1 μM nifedipine) reduced the amplitude of propagating Ca
2+
waves and contractions in the TSMC layer. Upon complete suppression of Ca
2+
entry through TSMC Ca
2+
channels, ASMCs displayed high-frequency (6 min
−1
) Ca
2+
transients, and ICs distributed into two populations of cells firing at 1 and 3 min
−1
, respectively. IC Ca
2+
transients periodically (every 3–5 min
−1
) summed into bursts which doubled the frequency of ASMC Ca
2+
transient firing. Synchronized IC bursting and the acceleration of ASMC firing were inhibited upon blockade of HCN channels with ZD7288 or cell-to-cell coupling with carbenoxolone. While ASMCs appear to be the primary pacemaker driving pyeloureteric peristalsis, it was concluded that sub-urothelial HCN3(+), Ca
V
3.1(+) ICs can accelerate ASMC Ca
2+
signalling.
Journal Article
TELOCYTES IN ENDOCARDIUM: Electron Microscope Evidence
2010
The term TELOCYTES was very recently introduced, for replacing the name Interstitial Cajal‐Like Cells (ICLC). In fact, telocytes are not really Cajal‐like cells, they being different from all other interstitial cells by the presence of telopodes, which are cell‐body prolongations, very thin (under the resolving power of light microscopy), extremely long (tens up to hundreds of micrometers), with a moniliform aspect (many dilations along), and having caveolae. The presence of telocytes in epicardium and myocardium was previously documented. We present here electron microscope images showing the existence of telocytes, with telopodes, at the level of mouse endocardium. Telocytes are located in the subendothelial layer of endocardium, and their telopodes are interposed in between the endocardial endothelium and the cardiomyocytes bundles. Some telopodes penetrate from the endocardium among the cardiomyocytes and surround them, eventually. Telopodes frequently establish close spatial relationships with myocardial blood capillaries and nerve endings. Because we may consider endocardium as a ‘blood–heart barrier’, or more exactly as a ‘blood–myocardium barrier’, telocytes might have an important role in such a barrier being the dominant cell population in subendothelial layer of endocardium.
Journal Article