Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,001 result(s) for "IOT"
Sort by:
A Holistic Overview of the Internet of Things Ecosystem
The Internet of Things (IoT) is a complex ecosystem of connected devices that exchange data over a wired or wireless network and whose final aim is to provide services either to humans or machines. The IoT has seen rapid development over the past decade. The total number of installed connected devices is expected to grow exponentially in the near future, since more and more domains are looking for IoT solutions. As a consequence, an increasing number of developers are approaching IoT technology for the first time. Unfortunately, the number of IoT-related studies published every year is becoming huge, with the obvious consequence that it would be impossible for anyone to predict the time that could be necessary to find a paper talking about a given problem at hand. This is the reason why IoT-related discussions have become predominant in various practitioners’ forums, which moderate thousands of posts each month. The present paper’s contribution is twofold. First, it aims at providing a holistic overview of the heterogeneous IoT world by taking into account a technology perspective and a business perspective. For each topic taken into account, a tutorial introduction (deliberately devoid of technical content to make this document within the reach of non-technical readers as well) is provided. Then, a table of very recent review papers is given for each topic, as the result of a systematic mapping study.
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.
Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions
The Internet of Things (IoT) is a global network of interconnected computing, sensing, and networking devices that can exchange data and information via various network protocols. It can connect numerous smart devices thanks to recent advances in wired, wireless, and hybrid technologies. Lightweight IoT protocols can compensate for IoT devices with restricted hardware characteristics in terms of storage, Central Processing Unit (CPU), energy, etc. Hence, it is critical to identify the optimal communication protocol for system architects. This necessitates an evaluation of next-generation networks with improved characteristics for connectivity. This paper highlights significant wireless and wired IoT technologies and their applications, offering a new categorization for conventional IoT network protocols. It provides an in-depth analysis of IoT communication protocols with detailed technical information about their stacks, limitations, and applications. The study further compares industrial IoT-compliant devices and software simulation tools. Finally, the study provides a summary of the current challenges, along with a broad overview of the future directions to tackle the challenges, in the next IoT generation. This study aims to provide a comprehensive primer on IoT concepts, protocols, and future insights that academics and professionals can use in various contexts.
Internet of Things is a revolutionary approach for future technology enhancement: a review
Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a lot of challenges and issues that need to be addressed to achieve the full potential of IoT. These challenges and issues must be considered from various aspects of IoT such as applications, challenges, enabling technologies, social and environmental impacts etc. The main goal of this review article is to provide a detailed discussion from both technological and social perspective. The article discusses different challenges and key issues of IoT, architecture and important application domains. Also, the article bring into light the existing literature and illustrated their contribution in different aspects of IoT. Moreover, the importance of big data and its analysis with respect to IoT has been discussed. This article would help the readers and researcher to understand the IoT and its applicability to the real world.
An Evaluation Process for IoT Platforms in Time-Sensitive Domains
Determining the temporal behavior of an IoT platform is of utmost importance as IoT systems are time-sensitive. IoT platforms play a central role in the operation of an IoT system, impacting the overall performance. As a result, initiating an IoT project without the exhaustive knowledge of such a core software piece may lead to a failed project if the finished systems do not meet the needed temporal response and scalability levels. Despite this fact, existing works on IoT software systems focus on the design and implementation of a particular system, providing a final evaluation as the validation. This is a risky approach as an incorrect decision on the core IoT platform may involve great monetary loss if the final evaluation proves that the system does not meet the expected validation criteria. To overcome this, we provide an evaluation process to determine the temporal behavior of IoT platforms to support early design decisions with respect to the appropriateness of the particular platform in its application as an IoT project. The process defines the steps towards the early evaluation of IoT platforms, ranging from the identification of the potential software items and the determination of the validation criteria to running the experiments and obtaining results. The process is exemplified on an exhaustive evaluation of a particular mainstream IoT platform for the case of a medical system for patient monitoring. In this time-sensitive scenario, results report the temporal behavior of the platform regarding the validation parameters expressed at the initial steps.
Hardware Development and Evaluation of Multihop Cluster-Based Agricultural IoT Based on Bluetooth Low-Energy and LoRa Communication Technologies
In this paper, we present the development and evaluation of a contextually relevant, cost-effective, multihop cluster-based agricultural Internet of Things (MCA-IoT) network. This network utilizes commercial off-the-shelf (COTS) Bluetooth Low-Energy (BLE) and LoRa communication technologies, along with the Raspberry Pi 3 Model B+ (RPi 3 B+), to address the challenges of climate change-induced global food insecurity in smart farming applications. Employing the lean engineering design approach, we initially implemented a centralized cluster-based agricultural IoT (CA-IoT) hardware testbed incorporating BLE, RPi 3 B+, STEMMA soil moisture sensors, UM25 m, and LoPy low-power Wi-Fi modules. This system was subsequently adapted and refined to assess the performance of the MCA-IoT network. This study offers a comprehensive reference on the novel, location-independent MCA-IoT technology, including detailed design and deployment insights for the agricultural IoT (Agri-IoT) community. The proposed solution demonstrated favorable performance in indoor and outdoor environments, particularly in water-stressed regions of Northern Ghana. Performance evaluations revealed that the MCA-IoT technology is easy to deploy and manage by users with limited expertise, is location-independent, robust, energy-efficient for battery operation, and scalable in terms of task and size, thereby providing a versatile range of measurements for future applications. Our results further demonstrated that the most effective approach to utilizing existing IoT-based communication technologies within a typical farming context in sub-Saharan Africa is to integrate them.
Guidance Framework for Developing IoT-Enabled Systems’ Cybersecurity
Internet of Things (IoT) faces security concerns different from existing challenges in conventional information systems connected through the Internet because of their limited resources and heterogeneous network setups. This work proposes a novel framework for securing IoT objects, the key objective of which is to assign different Security Level Certificates (SLC) for IoT objects according to their hardware capabilities and protection measures implemented. Objects with SLCs, therefore, will be able to communicate with each other or with the Internet in a secure manner. The proposed framework is composed of five phases, namely: classification, mitigation guidelines, SLC assignment, communication plan, and legacy integration. The groundwork relies on the identification of a set of security attributes, termed security goals. By performing an analysis on common IoT attacks, we identify which of these security goals are violated for specific types of IoT. The feasibility and application of the proposed framework is illustrated at each phase using the smart home as a case study. We also provide qualitative arguments to demonstrate how the deployment of our framework solves IoT specific security challenges.
Internet of Things: a comprehensive overview, architectures, applications, simulation tools, challenges and future directions
In recent years, Internet of Things (IoT) evolved as a new paradigm and gained a lot of traction in the wireless telecommunications industry. It changed the traditional way of living into a high-tech lifestyle through the integration of intelligent devices, applications, and technologies that automate everything around us. The IoT is anticipated to connect physical objects to facilitate intelligent decision making in the future years. Several studies have been conducted to improve IoT technology. To fully realize the potential of IoT, numerous problems and issues remain to be addressed. IoT challenges and issues must be addressed from multiple perspectives, including applications, supporting technology, and social and environmental implications. This review paper aims to provide a full discussion from both technological and social perspectives. The paper highlights several challenges and critical aspects in IoT, architecture, and its application fields. A generic architecture of IoT is proposed with its enabling technologies to highlight the uses of each layer and technologies that implemented in it. Market opportunities are a highlight that helps to understand the growth of IoT. Further, the functional blocks and working of IoT is discussed, so the researchers take interest in its implementation. Also, a detailed discussion on IoT fields and it’s uncovered challenges are highlighted. A brief overview of existing simulators and their functionalities is discussed, so that researchers can easily select the simulator as per their targeted objectives. In addition, major issues are highlighted that should be addressed by the scientific community. Finally, the significance of this research is to understand fundamentals of IoT architecture as well as a complete review in order to delve deeper into the difficulties and devise appropriate solutions.
A Survey of LoRaWAN for IoT: From Technology to Application
LoRaWAN is one of the low power wide area network (LPWAN) technologies that have received significant attention by the research community in the recent years. It offers low-power, low-data rate communication over a wide range of covered area. In the past years, the number of publications regarding LoRa and LoRaWAN has grown tremendously. This paper provides an overview of research work that has been published from 2015 to September 2018 and that is accessible via Google Scholar and IEEE Explore databases. First, a detailed description of the technology is given, including existing security and reliability mechanisms. This literature overview is structured by categorizing papers according to the following topics: (i) physical layer aspects; (ii) network layer aspects; (iii) possible improvements; and (iv) extensions to the standard. Finally, a strengths, weaknesses, opportunities and threats (SWOT) analysis is presented along with the challenges that LoRa and LoRaWAN still face.
Integrated Industrial Reference Architecture for Smart Healthcare in Internet of Things: A Systematic Investigation
Internet of Things (IoT) is one of the efflorescing technologies of recent years with splendid real-time applications in the fields of healthcare, agriculture, transportation, industry, and environmental monitoring. In addition to the dominant applications and services of IoT, many challenges exist. As there is a lack of standardization for IoT technologies, the architecture emerged as the foremost challenge. The salient issues in designing an IoT architecture encompass connectivity, data handling, heterogeneity, privacy, scalability, and security. The standard IoT architectures are the ETSI IoT Standard, the ITU-T IoT Reference Model, IoT-A Reference Model, Intel’s IoT Architecture, the Three-Layer Architecture, Middle-Based Architecture, Service-Oriented Architecture, Five-Layer Architecture, and IWF Architecture. In this paper, we have reviewed these architectures and concluded that IWF Architecture is most suitable for the effortless development of IoT applications because of its immediacy and depth of insight in dealing with IoT data. We carried out this review concerning smart healthcare as it is among the major industries that have been leaders and forerunners in IoT technologies. Motivated by this, we designed the novel Smart Healthcare Reference Architecture (SHRA) based on IWF Architecture. Finally, present the significance of smart healthcare during the COVID-19 pandemic. We have synthesized our findings in a systematic way for addressing the research questions on IoT challenges. To the best of our knowledge, our paper is the first to provide an exhaustive investigation on IoT architectural challenges with a use case in a smart healthcare system.