Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
122 result(s) for "Ichneumonoidea"
Sort by:
The genus Ussurohelcon Belokobylskij (Hymenoptera, Braconidae, Helconinae) in Vietnam, with descriptions of six new species
The genus Ussurohelcon Belokobylskij is recorded for the first time from Vietnam with six new species described and fully illustrated: Ussurohelcon hatinh Long, sp. nov ., U. hagiang Long, sp. nov ., U. mellicentralis Long, sp. nov ., U. mocchau Long & van Achterberg, sp. nov ., U. similis Long, sp. nov . and U. tuyenquang Long, sp. nov . Comparative morphological characters of Ussurohelcon species are discussed and a key to Oriental species is also provided.
Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species
Three new genera are described: Michener (Proteropinae), Bioalfa (Rogadinae), and Hermosomastax (Rogadinae). Keys are given for the New World genera of the following braconid subfamilies: Agathidinae, Braconinae, Cheloninae, Homolobinae, Hormiinae, Ichneutinae, Macrocentrinae, Orgilinae, Proteropinae, Rhysipolinae, and Rogadinae. In these subfamilies 416 species are described or redescribed. Most of the species have been reared and all but 13 are new to science. A consensus sequence of the COI barcodes possessed by each species is employed to diagnose the species, and this approach is justified in the introduction. Most descriptions consist of a lateral or dorsal image of the holotype, a diagnostic COI consensus barcode, the Barcode Index Number (BIN) code with a link to the Barcode of Life Database (BOLD), and the holotype specimen information required by the International Code of Zoological Nomenclature. The following species are treated and those lacking authorship are newly described here with authorship attributable to Sharkey except for the new species of Macrocentrinae which are by Sharkey & van Achterberg: AGATHIDINAE: Aerophilus paulmarshi , Mesocoelus davidsmithi , Neothlipsis bobkulai , Plesiocoelus vanachterbergi , Pneumagathis erythrogastra (Cameron, 1905), Therophilus bobwhartoni , T. donaldquickei , T. gracewoodae , T. maetoi , T. montywoodi , T. penteadodiasae , Zacremnops brianbrowni , Z. coatlicue Sharkey, 1990, Zacremnops cressoni (Cameron, 1887), Z. ekchuah Sharkey, 1990, Z. josefernandezi , Zelomorpha sarahmeierottoae . BRACONINAE: Bracon alejandromarini , B. alejandromasisi , B. alexamasisae , B. andresmarini , B. andrewwalshi , B. anniapicadoae , B. anniemoriceae , B. barryhammeli , B. bernardoespinozai , B. carlossanabriai , B. chanchini , B. christophervallei , B. erasmocoronadoi , B. eugeniephillipsae , B. federicomatarritai , B. frankjoycei , B. gerardovegai , B. germanvegai , B. isidrochaconi , B. jimlewisi , B. josejaramilloi , B. juanjoseoviedoi , B. juliodiazi , B. luzmariaromeroae , B. manuelzumbadoi , B. marialuisariasae , B. mariamartachavarriae , B. mariorivasi , B. melissaespinozae , B. nelsonzamorai , B. nicklaphami , B. ninamasisae , B. oliverwalshi , B. paulamarinae , B. rafamoralesi , B. robertofernandezi , B. rogerblancoi , B. ronaldzunigai , B. sigifredomarini , B. tihisiaboshartae , B. wilberthbrizuelai , Digonogastra montylloydi , D. montywoodi , D. motohasegawai , D. natwheelwrighti , D. nickgrishini . CHELONINAE: Adelius adrianguadamuzi , A. gauldi Shimbori & Shaw, 2019, A. janzeni Shimbori & Shaw, 2019, Ascogaster gloriasihezarae , A. grettelvegae , A. guillermopereirai , A. gustavoecheverrii , A. katyvandusenae , A. luisdiegogomezi , Chelonus alejandrozaldivari , C. gustavogutierrezi , C. gustavoinduni , C. harryramirezi , C. hartmanguidoi , C. hazelcambroneroae , C. iangauldi , C. isidrochaconi , C. janecheverriae , C. jeffmilleri , C. jennyphillipsae , C. jeremydewaardi , C. jessiehillae , C. jesusugaldei , C. jimlewisi , C. jimmilleri , C. jimwhitfieldi , C. johanvalerioi , C. johnburnsi , C. johnnoyesi , C. jorgebaltodanoi , C. jorgehernandezi , C. josealfredohernandezi , C. josefernandeztrianai , C. josehernandezcortesi , C. josemanuelperezi , C. josephinerodriguezae , C. juanmatai , C. junkoshimurae , C. kateperezae , C. luciariosae , C. luzmariaromeroae , C. manuelpereirai , C. manuelzumbadoi , C. marianopereirai , C. maribellealvarezae , C. markmetzi , C. markshawi , C. martajimenezae , C. mayrabonillae , C. meganmiltonae , C. melaniamunozae , C. michaelstroudi , C. michellevanderbankae , C. mingfangi , C. minorcarmonai , C. monikaspringerae , C. moniquegilbertae , C. motohasegawai , C. nataliaivanovae , C. nelsonzamorai , C. normwoodleyi , C. osvaldoespinozai , C. pamelacastilloae , C. paulgoldsteini , C. paulhansoni , C. paulheberti , C. petronariosae , C. ramyamanjunathae , C. randallgarciai , C. rebeccakittelae , C. robertoespinozai , C. robertofernandezi , C. rocioecheverriae , C. rodrigogamezi , C. ronaldzunigai , C. rosibelelizondoae , C. rostermoragai , C. ruthfrancoae , C. scottmilleri , C. scottshawi , C. sergioriosi , C. sigifredomarini , C. stevearonsoni , C. stevestroudi , C. sujeevanratnasinghami , C. sureshnaiki , C. torbjornekremi , C. yeimycedenoae , Leptodrepana alexisae , L. erasmocoronadoi , L. felipechavarriai , L. freddyquesadai , L. gilbertfuentesi , L. manuelriosi , Phanerotoma almasolisae , P. alvaroherrerai , P. anacordobae , P. anamariamongeae , P. andydeansi , P. angelagonzalezae , P. angelsolisi , P. barryhammeli , P. bernardoespinozai , P. calixtomoragai , P. carolinacanoae , P. christerhanssoni , P. christhompsoni , P. davesmithi , P. davidduthiei , P. dirksteinkei , P. donquickei , P. duniagarciae , P. duvalierbricenoi , P. eddysanchezi , P. eldarayae , P. eliethcantillanoae , P. jenopappi , Pseudophanerotoma alanflemingi , Ps. albanjimenezi , Ps. alejandromarini , Ps. alexsmithi , Ps. allisonbrownae , Ps. bobrobbinsi . HOMOLOBINAE: Exasticolus jennyphillipsae , E. randallgarciai , E. robertofernandezi , E. sigifredomarini , E. tomlewinsoni . HORMIINAE: Hormius anamariamongeae , H. angelsolisi , H. anniapicadoae , H. arthurchapmani , H. barryhammeli , H. carmenretanae , H. carloswalkeri , H. cesarsuarezi , H. danbrooksi , H. eddysanchezi , H. erikframstadi , H. georgedavisi , H. grettelvegae , H. gustavoinduni , H. hartmanguidoi , H. hectoraritai , H. hesiquiobenitezi , H. irenecanasae , H. isidrochaconi, H. jaygallegosi , H. jimbeachi , H. jimlewisi , H. joelcracrafti , H. johanvalerioi , H. johnburleyi , H. joncoddingtoni , H. jorgecarvajali , H. juanmatai , H. manuelzumbadoi , H. mercedesfosterae , H. modonnellyae , H. nelsonzamorai , H. pamelacastilloae , H. raycypessi , H. ritacolwellae , H. robcolwelli , H. rogerblancosegurai , H. ronaldzunigai , H. russchapmani , H. virginiaferrisae , H. warrenbrighami , H. willsflowersi . ICHNEUTINAE: Oligoneurus kriskrishtalkai , O. jorgejimenezi , Paroligoneurus elainehoaglandae , P. julianhumphriesi , P. mikeiviei . MACROCENTRINAE: Austrozele jorgecampabadali , A. jorgesoberoni , Dolichozele gravitarsis (Muesebeck, 1938), D. josefernandeztrianai , D. josephinerodriguezae , Hymenochaonia kalevikulli , H. kateperezae , H. katherinebaillieae , H. katherineellisonae , H. katyvandusenae , H. kazumifukunagae , H. keithlangdoni , H. keithwillmotti , H. kenjinishidai , H. kimberleysheldonae , H. krisnorvigae , H. lilianamadrigalae , H. lizlangleyae , Macrocentrus fredsingeri , M. geoffbarnardi , M. gregburtoni , M. gretchendailyae , M. grettelvegae , M. gustavogutierrezi , M. hannahjamesae , M. harisridhari , M. hillaryrosnerae , M. hiroshikidonoi , M. iangauldi , M. jennyphillipsae , M. jesseausubeli , M. jessemaysharkae , M. jimwhitfieldi , M. johnbrowni , M. johnburnsi , M. jonathanfranzeni , M. jonathanrosenbergi , M. jorgebaltodanoi , M. lucianocapelli . ORGILINAE: Orgilus amyrossmanae , O. carrolyoonae , O. christhompsoni , O. christinemcmahonae , O. dianalipscombae , O. ebbenielsoni , O. elizabethpennisiae , O. evertlindquisti , O. genestoermeri , O. jamesriegeri , O. jeanmillerae , O. jeffmilleri , O. jerrypowelli , O. jimtiedjei , O. johnlundbergi , O. johnpipolyi , O. jorgellorentei , O. larryspearsi , O. marlinricei , O. mellissaespinozae , O. mikesmithi , O. normplatnicki , O. peterrauchi , O. richardprimacki , O. sandraberriosae , O. sarahmirandae , O. scottmilleri , O. scottmorii , Stantonia billalleni , S. brookejarvisae , S. donwilsoni , S. erikabjorstromae , S. garywolfi , S. henrikekmani , S. luismirandai , S. miriamzunzae , S. quentinwheeleri , S. robinkazmierae , S. ruthtifferae . PROTEROPINAE: Hebichneutes tricolor Sharkey & Wharton, 1994, Proterops iangauldi , P. vickifunkae , Michener charlesi . RHYSIPOLINAE: Pseudorhysipolis luisfonsecai , P. mailyngonzalezaeRhysipolis julioquirosi . ROGADINAE: Aleiodes adrianaradulovae , A. adrianforsythi , A. agnespeelleae , A. alaneaglei , A. alanflemingi , A. alanhalevii , A. alejandromasisi , A. alessandracallejae , A. alexsmithi , A. alfonsopescadori , A. alisundermieri , A. almasolisae , A. alvarougaldei , A. alvaroumanai , A. angelsolisi , A. annhowdenae , A. bobandersoni , A. carolinagodoyae , A. charlieobrieni , A. davefurthi , A. donwhiteheadi , A. doylemckeyi , A. frankhovorei , A. henryhowdeni , A. inga Shimbori & Shaw, 2020, A. johnchemsaki , A. johnkingsolveri , A. gonodontovorus Shimbori & Shaw, 2020, A. manuelzumbadoi , A. mayrabonillae , A. michelledsouzae , A. mikeiviei , A. normwoodleyi , A. pammitchellae , A. pauljohnsoni , A. rosewarnerae , A. steveashei , A. terryerwini , A. willsflowersi , Bioalfa pedroleoni , B. alvarougaldei , B. rodrigogamezi , Choreborogas andydeansi , C. eladiocastroi , C. felipechavarriai , C. frankjoycei , Clinocentrus andywarreni , Cl. angelsolisi , Cystomastax alexhausmanni , Cy. angelagonzalezae , Cy. ayaigarashiae , Hermosomastax clavifemorus Quicke sp. nov., Heterogamus donstonei , Pseudoyelicones bernsweeneyi , Stiropius bencrairi , S. berndkerni , S. edgargutierrezi , S. edwilsoni , S. ehakernae , Triraphis billfreelandi , T. billmclarneyi , T. billripplei , T. bobandersoni , T. bobrobbinsi , T. bradzlotnicki , T. brianbrowni , T. brianlaueri , T. briannestjacquesae , T. camilocamargoi , T. carlosherrerai , T. carolinepalmerae , T. charlesmorrisi , T. chigiybinellae , T. christerhanssoni , T. christhompsoni , T. conniebarlowae , T. craigsimonsi , T. defectus Valerio, 2015, T. danielhubi , T. davidduthiei , T. davidwahli , T. federicomatarritai , T. ferrisjabri , T. mariobozai , T. martindohrni , T. matssegnestami , T. mehrdadhajibabaei , T. ollieflinti , T. tildalauerae , Yelicones dirksteinkei , Y. markmetzi , Y. monserrathvargasae , Y. tricolor Quicke, 1996. Y. woldai Quicke, 1996. The following new combinations are proposed: Neothlipsis smithi (Ashmead), new combination for Microdus smithi Ashmead, 1894; Neothlipsis pygmaeus (Enderlein), new combination for Microdus pygmae
Refining the Taxonomic Catalog of the Brazilian Fauna: some species of Darwin wasps (Hymenoptera: Ichneumonidae) erroneously reported for Brazil
ABSTRACT To correct errors in previous catalogs and update the Brazilian fauna, thirty-five species of Darwin wasps erroneously reported for Brazil are removed from the Taxonomic Catalog of the Brazilian Fauna, belonging to the following subfamilies: Anomaloninae (2 species), Banchinae (1), Campopleginae (8), Cremastinae (2), Cryptinae (8), Phygadeuontinae (3), Pimplinae (8), Tersilochinae (2), and Tryphoninae (1). Most species were incorrectly cataloged due to an incorrect interpretation of the species list created by Costa Lima in 1962, which mentions species occurring in neighboring countries but does not confirm their presence in Brazil. Thus, the Brazilian fauna of Ichneumonidae currently corresponds to 234 genera and 1,038 species.
Dickyyuellaargentinensis a tentative new genus and species of Cardiochilinae (Hymenoptera, Braconidae) from the Neotropical region
Kang & Sharkey, is a novel addition to the microgastroid complex of Braconidae. Taxonomic assignment within this complex posed challenges initially due to the presence of putatively plesiomorphic characters. However, closer examination revealed affiliations with the microgastroid complex, supported by morphological features such as the location of spiracles on the first metasomal tergum and the absence of spiracles on the seventh metasomal tergum. Based on the following two morphological characters, the presence of an inverted Y-shaped groove on the first metasomal tergum and pectinate tarsal claws, Kang & Sharkey, is tentatively placed within Cardiochilinae Ashmead, 1900 despite uncertainties surrounding phylogenetic relationships. This article provides the diagnosis of Kang & Sharkey, , the description of Kang & Sharkey, , and a discussion of the taxonomic placement of the new genus within the microgastroid complex.
Larissimusnigricans sp. nov. (Hymenoptera, Braconidae), a new reared species of a rare neotropical genus recovered through biodiversity inventory in Ecuador
A new species of the rarely collected neotropical microgastrine braconid wasp genus Nixon, represented previously by only a single described species, Nixon, was recovered by the Caterpillars and Parasitoids of the Eastern Andes in Ecuador inventory project. was reared from an unidentified species of arctiine Erebidae feeding on the common bamboo species Kunth at the Yanayacu Biological Station near Cosanga, Napo Province, Ecuador. The new species is described and diagnosed from using both morphological and DNA barcode data.
A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment
Here we elucidate and justify a DNA barcode approach to insect species description that can be applied to name tens of thousands of species of Ichneumonoidea and many other species-rich taxa. Each description consists of a lateral habitus image of the specimen, a COI barcode diagnosis, and the holotype specimen information required by the International Code of Zoological Nomenclature. We believe this approach, or a slight modification of it, will be useful for many other underdescribed hyperdiverse taxa, especially in the tropics. Due to the extreme species-richness of the Ichneumonoidea, the very low percentage of described species, and the lack of detailed biological information for most described species, the standard taxonomic approach is inefficient and overwhelmingly time consuming. A DNA barcode-based approach to initial description will provide a solid foundation of species hypotheses from which more comprehensive descriptions can be developed as other data, time, and budgets permit. Here we elucidate this view and detailed methodology that can generally be applied to species-rich underdescribed taxa. A real example is given by describing species in two genera, Hemichoma and Zelomorpha , reared from the Área de Conservación Guanacaste in northwestern Costa Rica. The generic type species Zelomorphaarizonensis is given a DNA barcode diagnosis and the following new species are described: Zelomorphaangelsolisi , Zelomorphabobandersoni , Zelomorphadanjohnsoni , Zelomorphadonwindsori , Zelomorphaeffugia , Zelomorphajohnchemsaki , Zelomorphakellyanneae , Zelomorphalarrykirkendalli , Zelomorphamariyavladmirovnae , Zelomorphamikeiviei , Zelomorphamyricagaleae , Zelomorphanoahjaneae , Zelomorphapaulgoldsteini , Zelomorphaterryerwini , Zelomorphawillsflowersi , Hemichomadonwhiteheadi , Hemichomafrankhovorei , and Hemichomajohnkingsolveri .
A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes for Drosophila Parasitoids
Some species of parasitic wasps have domesticated viral machineries to deliver immunosuppressive factors to their hosts. Up to now, all described cases fall into the Ichneumonoidea superfamily, which only represents around 10% of hymenoptera diversity, raising the question of whether such domestication occurred outside this clade. Furthermore, the biology of the ancestral donor viruses is completely unknown. Since the 1980s, we know that Drosophila parasitoids belonging to the Leptopilina genus, which diverged from the Ichneumonoidea superfamily 225 Ma, do produce immunosuppressive virus-like structure in their reproductive apparatus. However, the viral origin of these structures has been the subject of debate. In this article, we provide genomic and experimental evidence that those structures do derive from an ancestral virus endogenization event. Interestingly, its close relatives induce a behavior manipulation in present-day wasps. Thus, we conclude that virus domestication is more prevalent than previously thought and that behavior manipulation may have been instrumental in the birth of such associations.
A revised terminology for male genitalia in Hymenoptera (Insecta), with a special emphasis on Ichneumonoidea
Applying consistent terminology for morphological traits across different taxa is a highly pertinent task in the study of morphology and evolution. Different terminologies for the same traits can generate bias in phylogeny and prevent correct homology assessments. This situation is exacerbated in the male genitalia of Hymenoptera, and specifically in Ichneumonoidea, in which the terminology is not standardized and has not been fully aligned with the rest of Hymenoptera. In the current contribution, we review the terms used to describe the skeletal features of the male genitalia in Hymenoptera, and provide a list of authors associated with previously used terminology. We propose a unified terminology for the male genitalia that can be utilized across the order and a list of recommended terms. Further, we review and discuss the genital musculature for the superfamily Ichneumonoidea based on previous literature and novel observations and align the terms used for muscles across the literature.
Genera Colastes Haliday, Colastinus Belokobylskij, and Xenarcha Foerster (Hymenoptera, Braconidae, Exothecinae) from the Korean Peninsula with a discussion on the Exothecinae genus and subgenus composition
The Exothecinae genera Colastes Haliday, 1833, Colastinus Belokobylskij, 1984, and Xenarcha Foerster, 1863 of the Korean peninsula are reviewed. The names Pseudophanomeris Belokobylskij, 1984 and Shawiana van Achterberg, 1983 are synonymised with the genus Xenarcha Foerster and treated as subgenera. The two new species of Colastes and one new species and subspecies of Xenarcha are described and illustrated. Exothecus effectus Papp, 1972 is included in Xenarcha Foerster, comb. nov. The composition and distribution of the world-known Exothecinae genera are discussed and an illustrated key to its genera and subgenera is presented. A key to the Korean species of the genera Colastes , Xenarcha , and Colastinus is also provided.
The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps
Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.