Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,441 result(s) for "Icing"
Sort by:
Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs
Atmospheric in-flight icing on unmanned aerial vehicles (UAVs) is a significant hazard. UAVs that are not equipped with ice protection systems are usually limited to operations within visual line of sight or to weather conditions without icing risk. As many military and commercial UAV missions require flights beyond visual line of sight and into adverse weather conditions, energy-efficient ice protection systems are required. In this experimental study, two electro-thermal ice protection systems for fixed-wing UAVs were tested. One system was operated in anti-icing and de-icing mode, and the other system was designed as a parting strip de-icing system. Experiments were conducted in an icing wind tunnel facility for varying icing conditions at low Reynolds numbers. A parametric study over the ice shedding time was used to identify the most energy-efficient operation mode. The results showed that longer intercycle durations led to higher efficiencies and that de-icing with a parting strip was superior compared to anti-icing and de-icing without a parting strip. These findings are relevant for the development of energy-efficient systems in the future.
A Review on the Current Status of Icing Physics and Mitigation in Aviation
Icing on an aircraft is the cause of numerous adverse effects on aerodynamic performance. Although the issue was recognized in the 1920s, the icing problem is still an area of ongoing research due to the complexity of the icing phenomena. This review article aims to summarize current research on aircraft icing in two fundamental topics: icing physics and icing mitigation techniques. The icing physics focuses on fixed wings, rotors, and engines severely impacted by icing. The study of engine icing has recently become focused on ice-crystal icing. Icing mitigation techniques reviewed are based on active, passive, and hybrid methods. The active mitigation techniques include those based on thermal and mechanical methods, which are currently in use on aircraft. The passive mitigation techniques discussed are based on current ongoing studies in chemical coatings. The hybrid mitigation technique is reviewed as a combination of the thermal method (active) and chemical coating (passive) to lower energy consumption.
Analysis of Numerical Methods for Droplet Impingement Characteristics under Aircraft Icing Conditions
The investigation of super-cooled droplet impingement characteristics is the most important step for aircraft icing and anti-icing/de-icing analyses. The Lagrangian method and the Eulerian method are widely used to compute the droplet motion and collection efficiency, and the two methods are considered to obtain almost the same results for surface impingement characteristics under icing conditions. The models and implementation approaches of the two methods were established in this work, and the simulations of droplet motion were carried out for a NACA 0012 airfoil, a 2D section of an A320 head, a multi-element airfoil, and an icing wind tunnel. The collection efficiencies of the NACA 0012 airfoil obtained by the present Lagrangian and Eulerian methods show good agreement with the results in the literature, validating the established methods. The droplet impingement characteristics of the two methods are consistent for the aircraft surfaces without upstream trajectory deflections. However, when the droplet motion is deflected by the frontal body before hitting the rear surfaces, the results obtained by the two methods are different whether the droplet trajectories intersect or not, which subverts the traditional opinion that the Lagrangian and Eulerian methods would obtain the same result of the droplet impingement characteristics. The reason is studied in detail according to the droplet motion results in the icing wind tunnel. The findings of this work are helpful for the accuracy of aircraft icing and anti-icing/de-icing simulations, and useful for the development of airworthiness certification.
A Review of Icing and Anti-Icing Technology for Transmission Lines
This paper reviews the application of various advanced anti-icing and de-icing technologies in transmission lines. Introduces the influence of snowing and icing disasters on transmission lines, including a mechanical overload of steel towers, uneven icing or de-icing at different times, Ice-covered conductors galloping and icing flashover of insulators, as well as the icing disasters of transmission lines around the world in recent years. The formation of various icing categories on transmission lines, as well as the effect of meteorological factors, topography, altitude, line direction, suspension height, shape, and electric field on ice-covered transmission lines, are all discussed in this study. The application of various advanced anti/de-icing technologies and their advantages and disadvantages in power transmission lines are summarized. The anti/de-icing of traditional mechanical force, AC/DC short-circuit ice melting, and corona effect is introduced. Torque pendulum and diameter-expanded conductor (DEC) have remarkable anti-icing effects, and the early investment resources are less, the cost is low, and the later maintenance is not needed. In view of some deficiencies of AC and DC ice melting, the current transfer intelligent ice melting device (CTIIMD) can solve the problem well. The gadget has a good effect and high reliability for de-icing conductors in addition to being compact and inexpensive. The application of hydrophobic materials and heating coatings on insulators has a certain anti-icing effect, but the service life needs further research. Optimizing the shed’s construction and arranging several string kinds on the insulators is advisable to prevent icing and the anti-icing flashover effect. In building an insulator, only a different shed layout uses non-consumption energy.
Experimental Study on Optimum Design of Aircraft Icing Detection Based on Large-Scale Icing Wind Tunnel
Icing detection is the premise and basis for the operation of aircraft icing protection system, and is the primary issue in flight safety assurance. At present, there is a lack of research methods and design reference for the layout optimization of ice detectors. Therefore, in order to simulate the real icing environment encountered by the aircraft more accurately, a large-scale icing wind tunnel was used to carry out experimental research on the icing characteristics of the sensor probes. A closed-loop experimental method including the typical condition selection, sensor array interference examination and ice shape repeatability verification was initially proposed. A stepwise optimization process and a sensitivity analysis on ambient conditions were combined to determine the optimal distribution for sensor installation. It is found that the water collection coefficient on the cylinder surface of the probe first increases and then decreases along the axial direction, reaching the extreme value at a certain position. The height of this extreme point will gradually increase with the development of the wall boundary layer, showing a variation range of 2~30 mm. Improper design may cause the sensor probe to fail to capture the point with the maximum icing thickness, affecting the sensitivity of icing detection. In addition, each probe position has different sensitivity to changes in flow parameters; the points with larger icing mass and lower sensitivity to changes in attack angle will have better detection effect. The measured data and analysis in the present work can provide a basis for the accurate design of icing sensor probes.
R2O Transition of NCAR’s Icing and Turbulence Algorithms into NCEP’s Operations
National Center for Environmental Prediction (NCEP) started distributing global operational gridded in flight icing, turbulence and convective cloud products as part of World Area Forecast System (WAFS) products in 2007. Simple algorithms were used to derive these products during early stage based on NCEP Global Forecast System (GFS) forecast. These products quickly became essential flight planning tool for international aviation community and are especially important to developing countries that do not have resource to run numerical models themselves. To further improve these products, Environmental Modeling Center (EMC) started collaborating with National Center for Atmospheric Research (NCAR) to transition their aviation research algorithms into NCEP’s operations (R2O), particularly Forecast Icing Potential (FIP) and Graphical Turbulence Guidance (GTG) algorithms. The initial attempt is to apply FIP to GFS forecast to potentially replace WAFS icing product. Extensive evaluation demonstrated FIP outperformed original WAFS icing product and, with support from Aviation Weather Center (AWC) and Federal Aviation Administration (FAA), EMC replaced US WAFS icing product with FIP in 2015. EMC recently also implemented GTG with 2017 GFS upgrade but GTG will not replace WAFS turbulence until 2019. This paper will describe the methodology which EMC used to transition NCAR’s aviation research algorithms into NCEP’s operations. It will also describe how EMC generates icing analysis data to be used as truth for performing objective verification. Several case studies will be presented and the methodology and results for objective validation will be discussed. Finally, future collaboration plan with NCAR and implementation plans to continue to improve WAFS products will be stated.
Asymmetric Heat Transfer in Aircraft Electrothermal Anti-Icing
Aircraft icing is an important cause of air disasters, and electrothermal anti-icing is a common protection method. In this work, the influence of icing meteorological conditions on the anti-icing was studied through an icing wind tunnel experiment on the fairing. Based on the finite volume method, a transient heat transfer calculation method for electrothermal anti-icing was proposed. The calculated results were compared with the experimental results, and the influence of heating mode and structure layout on the anti-icing effect was analyzed. The results show that the calculated results are in good agreement with the experimental results, and the heat transfer of the anti-icing structure shows obvious asymmetry. First, during heating, the temperature gradient of the structural profile is large, the high temperature is concentrated in the heating layer, and the temperature distribution of the heating layer is relatively uniform. During cooling, the temperature distribution of the structural profile is more uniform, the high temperature is mainly concentrated in the back conduction layer, and the temperature of the outer wall increases first and then decreases from the center to the surroundings. Second, when the spray is turned on, the temperature of the outer wall is significantly reduced, but the temperature of the heating layer hardly changes. Third, the uniform heating mode can simultaneously raise the temperature of the outer wall and reduce the temperature of heating layer. Fourth, while the front conduction layer can significantly affect the temperature of the heating layer and the outer wall, the effect of the back conduction layer is small. However, the back one can be used to control the structural temperature more finely.
A Comprehensive Analysis of Wind Turbine Blade Damage
The scope of this article is to review the potential causes that can lead to wind turbine blade failures, assess their significance to a turbine’s performance and secure operation and summarize the techniques proposed to prevent these failures and eliminate their consequences. Damage to wind turbine blades can be induced by lightning, fatigue loads, accumulation of icing on the blade surfaces and the exposure of blades to airborne particulates, causing so-called leading edge erosion. The above effects can lead to damage ranging from minor outer surface erosion to total destruction of the blade. All potential causes of damage to wind turbine blades strongly depend on the surrounding environment and climate conditions. Consequently, the selection of an installation site with favourable conditions is the most effective measure to minimize the possibility of blade damage. Otherwise, several techniques and methods have already been applied or are being developed to prevent blade damage, aiming to reduce damage risk if not able to eliminate it. The combined application of damage prevention strategies with a SCADA system is the optimal approach to adequate treatment.