Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,899 result(s) for "Icings"
Sort by:
Cake decorating
Simple step-by-step instructions for creating specialty cakes including color photographs of how they should look.
A Review on the Current Status of Icing Physics and Mitigation in Aviation
Icing on an aircraft is the cause of numerous adverse effects on aerodynamic performance. Although the issue was recognized in the 1920s, the icing problem is still an area of ongoing research due to the complexity of the icing phenomena. This review article aims to summarize current research on aircraft icing in two fundamental topics: icing physics and icing mitigation techniques. The icing physics focuses on fixed wings, rotors, and engines severely impacted by icing. The study of engine icing has recently become focused on ice-crystal icing. Icing mitigation techniques reviewed are based on active, passive, and hybrid methods. The active mitigation techniques include those based on thermal and mechanical methods, which are currently in use on aircraft. The passive mitigation techniques discussed are based on current ongoing studies in chemical coatings. The hybrid mitigation technique is reviewed as a combination of the thermal method (active) and chemical coating (passive) to lower energy consumption.
Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs
Atmospheric in-flight icing on unmanned aerial vehicles (UAVs) is a significant hazard. UAVs that are not equipped with ice protection systems are usually limited to operations within visual line of sight or to weather conditions without icing risk. As many military and commercial UAV missions require flights beyond visual line of sight and into adverse weather conditions, energy-efficient ice protection systems are required. In this experimental study, two electro-thermal ice protection systems for fixed-wing UAVs were tested. One system was operated in anti-icing and de-icing mode, and the other system was designed as a parting strip de-icing system. Experiments were conducted in an icing wind tunnel facility for varying icing conditions at low Reynolds numbers. A parametric study over the ice shedding time was used to identify the most energy-efficient operation mode. The results showed that longer intercycle durations led to higher efficiencies and that de-icing with a parting strip was superior compared to anti-icing and de-icing without a parting strip. These findings are relevant for the development of energy-efficient systems in the future.
A Review of Icing and Anti-Icing Technology for Transmission Lines
This paper reviews the application of various advanced anti-icing and de-icing technologies in transmission lines. Introduces the influence of snowing and icing disasters on transmission lines, including a mechanical overload of steel towers, uneven icing or de-icing at different times, Ice-covered conductors galloping and icing flashover of insulators, as well as the icing disasters of transmission lines around the world in recent years. The formation of various icing categories on transmission lines, as well as the effect of meteorological factors, topography, altitude, line direction, suspension height, shape, and electric field on ice-covered transmission lines, are all discussed in this study. The application of various advanced anti/de-icing technologies and their advantages and disadvantages in power transmission lines are summarized. The anti/de-icing of traditional mechanical force, AC/DC short-circuit ice melting, and corona effect is introduced. Torque pendulum and diameter-expanded conductor (DEC) have remarkable anti-icing effects, and the early investment resources are less, the cost is low, and the later maintenance is not needed. In view of some deficiencies of AC and DC ice melting, the current transfer intelligent ice melting device (CTIIMD) can solve the problem well. The gadget has a good effect and high reliability for de-icing conductors in addition to being compact and inexpensive. The application of hydrophobic materials and heating coatings on insulators has a certain anti-icing effect, but the service life needs further research. Optimizing the shed’s construction and arranging several string kinds on the insulators is advisable to prevent icing and the anti-icing flashover effect. In building an insulator, only a different shed layout uses non-consumption energy.
Functionalized Superhydrophobic Coatings with Electro‐Photothermal Effect for All‐Day Durable Anti‐Icing
Superhydrophobic surfaces offer notable advantages, including markedly low water affinity and reduced ice adhesion strength. Nevertheless, their practical utility is impeded by their limited durability and vulnerability to failure in cold and humid environments. In this study, a novel approach for devising an electro‐photothermal superhydrophobic (EPS) nanocomposite coating is presented. The findings indicate that the EPS nanocomposite coating exhibits both physical and chemical self‐cleaning attributes, showcasing a synergistic interplay of superhydrophobicity, electrothermal, and photothermal characteristics. The superhydrophobic coating delays icing about four times longer than the original coating. At ambient temperatures of −20 °C, the coating stacked with an electro‐ and photo‐thermal performance de‐icing layer reduces the de‐icing time by about 5 times more than the purely photo‐thermal performance de‐icing time, and reduces the de‐icing time by about 4 times more than the purely electro‐thermal de‐icing time. Furthermore, the EPS surface demonstrates the capability to sustain temperatures above 0 °C through the photothermal effect on sunny days, utilizing both the electrothermal and photothermal effects on cloudy days, and relying on the electrothermal effect during cold nights. The research introduces a novel method for fabricating functional materials, pertinent to practical anti‐icing and de‐icing applications. The EPS coating is specifically engineered to execute anti‐icing and de‐icing functions, employing both solar thermal and electrical methodologies. This dual‐pronged functionality underscores the EPS coating's proficiency in utilizing solar energy during the daytime and electrical energy during nighttime hours, all geared towards the objectives of anti‐icing and de‐icing.
Experimental Study on the Icing of Rotating Intake Cones in Wind Tunnels Under Supercooled Large-Droplet Conditions
Supercooled droplets that collide with the windward surface of the aircraft will freeze, which results in icing on both stationary and rotating components. The ice accretion on rotating surfaces is physically different from those on stationary components. The icing phenomenon on the surface of a rotating intake cone was investigated in an icing wind tunnel, and the influence of icing conditions of supercooled large droplets on the experimental results was analyzed. In the experiments, the ice accretion of the intake cone was studied under various conditions, including rotational speed, wind speed, icing temperature, droplet diameter, and icing time. The ice shape on the surface of the intake cone is notably unique due to the influence of centrifugal force, which produces a longer feather-like ice structure that has a significant effect on the performance of the engine. The process of ice shedding caused by centrifugal force is also critical for the engine anti-icing process. Therefore, it is essential to study the icing characteristics under rotational effects during the design and verification process of engine anti-icing systems.
Environmental Chamber Characterization of an Ice Detection Sensor for Aviation Using Graphene and PEDOT:PSS
In the context of improving aircraft safety, this work focuses on creating and testing a graphene-based ice detection system in an environmental chamber. This research is driven by the need for more accurate and efficient ice detection methods, which are crucial in mitigating in-flight icing hazards. The methodology employed involves testing flat graphene-based sensors in a controlled environment, simulating a variety of climatic conditions that could be experienced in an aircraft during its entire flight. The environmental chamber enabled precise manipulation of temperature and humidity levels, thereby providing a realistic and comprehensive test bed for sensor performance evaluation. The results were significant, revealing the graphene sensors’ heightened sensitivity and rapid response to the subtle changes in environmental conditions, especially the critical phase transition from water to ice. This sensitivity is the key to detecting ice formation at its onset, a critical requirement for aviation safety. The study concludes that graphene-based sensors tested under varied and controlled atmospheric conditions exhibit a remarkable potential to enhance ice detection systems for aircraft. Their lightweight, efficient, and highly responsive nature makes them a superior alternative to traditional ice detection technologies, paving the way for more advanced and reliable aircraft safety solutions.
A Comprehensive Analysis of Wind Turbine Blade Damage
The scope of this article is to review the potential causes that can lead to wind turbine blade failures, assess their significance to a turbine’s performance and secure operation and summarize the techniques proposed to prevent these failures and eliminate their consequences. Damage to wind turbine blades can be induced by lightning, fatigue loads, accumulation of icing on the blade surfaces and the exposure of blades to airborne particulates, causing so-called leading edge erosion. The above effects can lead to damage ranging from minor outer surface erosion to total destruction of the blade. All potential causes of damage to wind turbine blades strongly depend on the surrounding environment and climate conditions. Consequently, the selection of an installation site with favourable conditions is the most effective measure to minimize the possibility of blade damage. Otherwise, several techniques and methods have already been applied or are being developed to prevent blade damage, aiming to reduce damage risk if not able to eliminate it. The combined application of damage prevention strategies with a SCADA system is the optimal approach to adequate treatment.
The Icing Characteristics of Post Insulators in a Natural Icing Environment
Icing significantly reduces the electrical performance of insulators, and grid failures caused by insulator icing are common. Currently, most research on the flashover characteristics of insulators under icing conditions focuses on artificially iced suspension insulators, with limited studies on post insulators under natural icing conditions. The shed spacing of post insulators is smaller, making them more prone to bridging by icicles in the same icing environment, which exacerbates insulation problems. Therefore, investigating the icing characteristics of post insulators is crucial. In this study, natural icing growth was observed on seven different types of post insulators at the Xuefeng Mountain Energy Equipment Safety National Observation and Research Station. The icing morphology and characteristics of these insulators were examined. The main conclusions are as follows: (1) the icing type and morphology of post insulators are influenced by meteorological conditions, with more severe icing observed on the windward side. (2) The icing mass and icicle length of the insulator increase nonlinearly with icing time. Specifically, during the glaze icing period from 0 to 8 h, the ice mass on the Type V composite post insulator was 3.89 times greater than that during the 13-to-18 h period. (3) Within the same icing cycle, the icing growth rate on composite post insulators is faster than on porcelain post insulators. (4) Compared to suspension insulators, the sheds of post insulators are more easily bridged by icicles. Notably, when the sheds of post insulators are bridged by icicles, the length of icicles on suspension insulators is only half of the gap size.
Forecasting In-Flight Icing over Greece: Insights from a Low-Pressure System Case Study
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology of forecasting icing conditions, with the development of the Icing Potential Algorithm that takes into consideration the meteorological scenarios related to icing accretion, using state-of-the-art Numerical Weather Prediction model results, and forming a fuzzy logic tree based on different membership functions, applied for the first time over Greece. The synoptic situation of an organized low-pressure system passage, with occlusion, cold and warm fronts, over Greece that creates dynamically significant conditions for icing formation was investigated. The sensitivity of the algorithm was revealed upon the precipitation, cloud type and vertical velocity effects. It was shown that the greatest icing intensity is associated with single-layer ice and multi-layer clouds that are comprised of both ice and supercooled water, while convectivity and storm presence lead to also enhancing the icing formation. A qualitative evaluation of the results with satellite, radar and METAR observations was performed, indicating the general agreement of the method mainly with the ground-based observations.