Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,128 result(s) for "Ileum - immunology"
Sort by:
Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum
ObjectiveDendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC.DesignHuman DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction.ResultsA lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4+FoxP3+IL-10+ (regulatory) T cells. There were enhanced proportions of CD103+Sirpα− DC in the colon, with increased proportions of CD103+Sirpα+ DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103+Sirpα+ DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103+ DC, in particular CD103+Sirpα+ DC. However, expression of ILT3 was associated with CD103− DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells.ConclusionsThe regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting.
Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer
The prognosis of colon cancer (CC) is dictated by tumor-infiltrating lymphocytes, including follicular helper T (T FH ) cells and the efficacy of chemotherapy-induced immune responses. It remains unclear whether gut microbes contribute to the elicitation of T FH cell-driven responses. Here, we show that the ileal microbiota dictates tolerogenic versus immunogenic cell death of ileal intestinal epithelial cells (IECs) and the accumulation of T FH cells in patients with CC and mice. Suppression of IEC apoptosis led to compromised chemotherapy-induced immunosurveillance against CC in mice. Protective immune responses against CC were associated with residence of Bacteroides fragilis and Erysipelotrichaceae in the ileum. In the presence of these commensals, apoptotic ileal IECs elicited PD-1 + T FH cells in an interleukin-1R1- and interleukin-12-dependent manner. The ileal microbiome governed the efficacy of chemotherapy and PD-1 blockade in CC independently of microsatellite instability. These findings demonstrate that immunogenic ileal apoptosis contributes to the prognosis of chemotherapy-treated CC. Local microbiome composition influences treatment efficacy of chemotherapy in colon cancer via modulation of tolerogenic versus immunogenic ileal intestinal epithelial cell death, which in turn influences follicular helper T cell priming.
A gut-vascular barrier controls the systemic dissemination of bacteria
In healthy individuals, the intestinal microbiota cannot access the liver, spleen, or other peripheral tissues. Some pathogenic bacteria can reach these sites, however, and can induce a systemic immune response. How such compartmentalization is achieved is unknown. We identify a gut-vascular barrier (GVB) in mice and humans that controls the translocation of antigens into the bloodstream and prohibits entry of the microbiota. Salmonella typhimurium can penetrate the GVB in a manner dependent on its pathogenicity island (Spi) 2-encoded type III secretion system and on decreased β-catenin-dependent signaling in gut endothelial cells. The GVB is modified in celiac disease patients with elevated serum transaminases, which indicates that GVB dismantling may be responsible for liver damage in these patients. Understanding the GVB may provide new insights into the regulation of the gut-liver axis.
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
Epithelial cells line the intestinal tract and help to keep the peace between our immune system and our trillions of gut microbes. Such peacekeeping requires glycosylated proteins (proteins with attached carbohydrate chains) present on the epithelial cell surface, but how glycosylation occurs is unclear. Goto et al. find that fucosylation (a type of glycosylation) of gut epithelial cells in mice requires gut microbes (see the Perspective by Hooper). This process also requires innate lymphoid cells there, which produce the cytokines interleukin-22 and lymphotoxin, presumably in response to microbial signals. These cytokines signal epithelial cells to add fucose to membrane proteins, which allows the détente between microbes and immune cells to continue. Science , this issue 10.1126/science.1254009 ; see also p. 1248 Glycosylation of gut epithelial cells requires gut microbes, innate lymphoid cells, and cytokines. [Also see Perspective by Hooper ] Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host–microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria–dependent and –independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium . Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.
Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis
BackgroundThe aim of the study was to better characterise the immunological origin and the behaviour of interleukin (IL)-23-responsive innate lymphoid cells (ILCs) in the gut, synovial fluid (SF) and bone marrow (BM) of patients with ankylosing spondylitis (AS).MethodsILC1, ILC2 and ILC3 cells were determined and characterised by confocal microscopy and flow cytometry in ileal and BM biopsies, in peripheral blood (PB) and SF mononuclear cells obtained from patients with AS and controls. Mucosal vascular addressin cell adhesion molecule 1 (MADCAM-1), IL-7, IL-15 and aggregates of lymphoid tissue inducer cells (LTi) were evaluated by immunohistochemistry. The in vitro ability of epithelial cells in driving the differentiation of ILC3 and the effect of tumour necrosis factor inhibitors (TNFi) on the frequency of ILC3 and the expression of MADCAM1 were also assessed.ResultsILC3 characterised as Lyn−RORc−Tbet+ NKp44+ cells were significantly expanded in the gut, SF and BM of patients with AS compared with controls, produced high levels of IL-17 and IL-22 and expressed α4β7. MADcAM1 was overexpressed in BM and ileal high endothelial venules. IL-7 was significantly increased in AS gut, especially in the context of Paneth cells, and accompanied by the presence of aggregates of c-kit/IL-7R+ cells (LTi). In in vitro experiments, epithelial cells from patients with AS actively induced differentiation of ILC3 from LTi. TNFi efficacy was accompanied by a significant decrease in the percentage of intestinal and circulating ILC3 and in the expression of MADCAM1.ConclusionsGut-derived IL-17+ and IL-22+ILC3 are expanded in the peripheral blood, SF and inflamed BM of patients with AS, suggesting the presence of an active homing axis between the gut and the inflamed sacroiliac joints.
Capsular polysaccharide correlates with immune response to the human gut microbe Ruminococcus gnavus
Active inflammatory bowel disease (IBD) often coincides with increases of Ruminococcus gnavus, a gut microbe found in nearly everyone. It was not known how, or if, this correlation contributed to disease. We investigated clinical isolates of R. gnavus to identify molecular mechanisms that would link R. gnavus to inflammation. Here, we show that only some isolates of R. gnavus produce a capsular polysaccharide that promotes a tolerogenic immune response, whereas isolates lacking functional capsule biosynthetic genes elicit robust proinflammatory responses in vitro. Germ-free mice colonized with an isolate of R. gnavus lacking a capsule show increased measures of gut inflammation compared to those colonized with an encapsulated isolate in vivo. These observations in the context of our earlier identification of an inflammatory cell-wall polysaccharide reveal how some strains of R. gnavus could drive the inflammatory responses that characterize IBD.
Supplemental β-carotene increases IgA-secreting cells in mammary gland and IgA transfer from milk to neonatal mice
Mortality of neonates continues to be a major problem in humans and animals. IgA provides protection against microbial antigens at mucosal surfaces. Although β-carotene supplementation has been expected to enhance retinoic acid-mediated immune response in neonates, the exact mechanism by which β-carotene enhances IgA production is still unclear. We investigated the effect of supplemental β-carotene for maternal mice during pregnancy and lactation on IgA antibody-secreting cells (ASC) in mammary gland and guts and on IgA transfer from milk to neonatal mice. Pregnant mice were fed untreated or 50 mg/kg β-carotene-supplemented diets from 6·5 d postcoitus (dpc) to 14 d postpartum (dpp). Supplemental β-carotene increased the numbers of IgA ASC in mammary gland (P < 0·05) and ileum (P < 0·001), and also mRNA expression of IgA C-region in ileum (P < 0·05) of maternal mice at 14 dpp, but few IgA ASC were detected in mammary gland at 17·5 dpc. IgA concentration in stomach contents, which represents milk IgA level, was significantly higher (P < 0·01) in neonatal mice born to β-carotene-supplemented mothers at 7 and 14 dpp, and IgA concentration in serum, stomach contents and faeces increased (P < 0·001) drastically with age. These results suggest that β-carotene supplementation for maternal mice during pregnancy and lactation is useful for enhancing IgA transfer from maternal milk to neonates owing to the increase in IgA ASC in mammary gland and ileum during lactation.
Early Weaning Stress in Pigs Impairs Innate Mucosal Immune Responses to Enterotoxigenic E. coli Challenge and Exacerbates Intestinal Injury and Clinical Disease
The clinical onset and severity of intestinal disorders in humans and animals can be profoundly impacted by early life stress. Here we investigated the impact of early weaning stress in pigs on intestinal physiology, clinical disease, and immune response to subsequent challenge with enterotoxigenic F18 E. coli (ETEC). Pigs weaned from their dam at 16 d, 18 d, and 20 d of age were given a direct oral challenge of F18 ETEC at 26 d of age. Pigs were monitored from days 0 to 4 post-infection for clinical signs of disease. On Day 4 post-ETEC challenge, ileal barrier function, histopathologic and inflammatory cytokine analysis were performed on ileal mucosa. Early weaned pigs (16 d and 18 d weaning age) exhibited a more rapid onset and severity of diarrhea and reductions in weight gain in response to ETEC challenge compared with late weaned pigs (20 d weaning age). ETEC challenge induced intestinal barrier injury in early weaned pigs, indicated by reductions in ileal transepithelial electrical resistance (TER) and elevated FD4 flux rates, in early weaned pig ileum but not in late weaned pigs. ETEC-induced marked elevations in IL-6 and IL-8, neutrophil recruitment, and mast cell activation in late-weaned pigs; these responses were attenuated in early weaned pigs. TNF levels elevated in ETEC challenged ileal mucosa from early weaned pigs but not in other weaning age groups. These data demonstrate the early weaning stress can profoundly alter subsequent immune and physiology responses and clinical outcomes to subsequent infectious pathogen challenge. Given the link between early life stress and gastrointestinal diseases of animals and humans, a more fundamental understanding of the mechanisms by which early life stress impacts subsequent pathophysiologic intestinal responses has implications for the prevention and management of important GI disorders in humans and animals.
ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens
T cell dependent secretory IgA (SIgA) generated in the Peyer’s patches (PPs) of the small intestine shapes a broadly diverse microbiota that is crucial for host physiology. The mutualistic co-evolution of host and microbes led to the relative tolerance of host’s immune system towards commensal microorganisms. The ATP-gated ionotropic P2X7 receptor limits T follicular helper (Tfh) cells expansion and germinal center (GC) reaction in the PPs. Here we show that transient depletion of intestinal ATP can dramatically improve high-affinity IgA response against both live and inactivated oral vaccines. Ectopic expression of Shigella flexneri periplasmic ATP-diphosphohydrolase (apyrase) abolishes ATP release by bacteria and improves the specific IgA response against live oral vaccines. Antibody responses primed in the absence of intestinal extracellular ATP (eATP) also provide superior protection from enteropathogenic infection. Thus, modulation of eATP in the small intestine can affect high-affinity IgA response against gut colonizing bacteria. The generation of protective secretory IgA is a desired outcome of oral vaccination. Here, the authors show that the depletion of intestinal ATP significantly improves the production and response of high-affinity IgA against both live and inactivated oral vaccines.
Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts
Crohn’s disease is an inflammatory disease of the gastrointestinal tract characterized by an aberrant response to microbial and environmental triggers. This includes an altered microbiome dominated by Enterobacteriaceae and in particular adherent-invasive E. coli (AIEC). Clinical evidence implicates periods of psychological stress in Crohn’s disease exacerbation, and disturbances in the gut microbiome might contribute to the pathogenic mechanism. Here we show that stress-exposed mice develop ileal dysbiosis, dominated by the expansion of Enterobacteriaceae. In an AIEC colonisation model, stress-induced glucocorticoids promote apoptosis of CD45 + CD90 + cells that normally produce IL-22, a cytokine that is essential for the maintenance of ileal mucosal barrier integrity. Blockade of glucocorticoid signaling or administration of recombinant IL-22 restores mucosal immunity, prevents ileal dysbiosis, and blocks AIEC expansion. We conclude that psychological stress impairs IL-22-driven protective immunity in the gut, which creates a favorable niche for the expansion of pathobionts that have been implicated in Crohn’s disease. Importantly, this work also shows that immunomodulation can counteract the negative effects of psychological stress on gut immunity and hence disease-associated dysbiosis. Altered gut microbiome and exacerbation of symptoms at times of psychological stress are feature characteristics of Crohn’s disease. Here authors show in a mouse model that psychological stress impairs IL-22-dependent protective immunity of the ileal mucosa, which allows invasive bacteria to colonise the gut.