Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
281,878 result(s) for "Image Processing"
Sort by:
Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. •Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies.
Practical Image and Video Processing Using MATLAB
UP-TO-DATE, TECHNICALLY ACCURATE COVERAGE OF ESSENTIAL TOPICS IN IMAGE AND VIDEO PROCESSING This is the first book to combine image and video processing with a practical MATLAB®-oriented approach in order to demonstrate the most important image and video techniques and algorithms. Utilizing minimal math, the contents are presented in a clear, objective manner, emphasizing and encouraging experimentation. The book has been organized into two parts. Part I: Image Processing begins with an overview of the field, then introduces the fundamental concepts, notation, and terminology associated with image representation and basic image processing operations. Next, it discusses MATLAB® and its Image Processing Toolbox with the start of a series of chapters with hands-on activities and step-by-step tutorials. These chapters cover image acquisition and digitization; arithmetic, logic, and geometric operations; point-based, histogram-based, and neighborhood-based image enhancement techniques; the Fourier Transform and relevant frequency-domain image filtering techniques; image restoration; mathematical morphology; edge detection techniques; image segmentation; image compression and coding; and feature extraction and representation. Part II: Video Processing presents the main concepts and terminology associated with analog video signals and systems, as well as digital video formats and standards. It then describes the technically involved problem of standards conversion, discusses motion estimation and compensation techniques, shows how video sequences can be filtered, and concludes with an example of a solution to object detection and tracking in video sequences using MATLAB®. Extra features of this book include: * More than 30 MATLAB® tutorials, which consist of step-by-step guides toexploring image and video processing techniques using MATLAB® * Chapters supported by figures, examples, illustrative problems, and exercises * Useful websites and an extensive list of bibliographical references This accessible text is ideal for upper-level undergraduate and graduate students in digital image and video processing courses, as well as for engineers, researchers, software developers, practitioners, and anyone who wishes to learn about these increasingly popular topics on their own.
Biomedical Signal Analysis - Contemporary Methods and Applications
This book describes a broad range of methods, including continuous and discrete Fourier transforms, independent component analysis (ICA), dependent component analysis, neural networks, and fuzzy logic methods. The book then discusses applications of these theoretical tools to practical problems in everyday biosignal processing, considering such subjects as exploratory data analysis and low-frequency connectivity analysis in MRI, MRI signal processing including lesion detection in breast MRI, dynamic cerebral contrast-enhanced perfusion MRI, skin lesion classification, and microscopic slice image processing and automatic labeling.
2-D and 3-D image registration
To master the fundamentals of image registration, there is no more comprehensive source than 2-D and 3-D Image Registration. In addition to delving into the relevant theories of image registration, the author presents their underlying algorithms. You'll also discover cutting-edge techniques to use in remote sensing, industrial, and medical applications. Examples of image registration are presented throughout, and the companion Web site contains all the images used in the book and provides links to software and algorithms discussed in the text, allowing you to reproduce the results in the text and develop images for your own research needs. 2-D and 3-D Image Registration serves as an excellent textbook for classes in image registration as well as an invaluable working resource.
Hyperspectral data processing
\"This book is intended to be a sequel from the author's other title with Kluwer \"Hyperspectral Imaging: Techniques for Spectral Detection and Classification\". It contains five major parts. Part I is new aspects of OSP including 7 chapters, OSP revisit, generalized OSP, FPGA designs for OSP and CEM, Kalman filter-based linear unmixing, least squares fully constrained linear mixture analysis, exploitation-based hyperspectral data compression and size estimation of supixel targets, Part II is interference rejection for linear unmixing composed of three chapters, signal-composed interference-annihilated theory, interference-annihilated noise-adjusted theory and information-processed matched filter theory; Part III is nonlinear non-literal techniques for linear unmixing consisting of 3 chapters, convex cone analysis, information theoretic criterion-based project pursuit and nonlinear mixing model analysis; Part IV is spectral coding comprising of three chapters, progressive spectral coding, spectral binary coding and spectral coding for band selection; Part V is applications made up of two chapters, applications to magnetic resonance imaging and landmine detection\"--
Fundamentals of light microscopy and electronic imaging
Fundamentals of Light Microscopy and Electronic Imaging, Second Edition provides a coherent introduction to the principles and applications of the integrated optical microscope system, covering both theoretical and practical considerations. It expands and updates discussions of multi-spectral imaging, intensified digital cameras, signal colocalization, and uses of objectives, and offers guidance in the selection of microscopes and electronic cameras, as well as appropriate auxiliary optical systems and fluorescent tags.The book is divided into three sections covering optical principles in diffraction and image formation, basic modes of light microscopy, and components of modern electronic imaging systems and image processing operations. Each chapter introduces relevant theory, followed by descriptions of instrument alignment and image interpretation. This revision includes new chapters on live cell imaging, measurement of protein dynamics, deconvolution microscopy, and interference microscopy. PowerPoint slides of the figures as well as other supplementary materials for instructors are available at a companion website: www.wiley.com/go/murphy/lightmicroscopy
Fundamentals of digital image processing
\"Given the timely topic and its user-friendly structure, this book can therefore target a suite of users, from students to experienced researchers willing to integrate the science of image processing to strengthen their research.\" (Ethology Ecology & Evolution, 1 May 2013).
Why rankings of biomedical image analysis competitions should be interpreted with care
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future. Biomedical image analysis challenges have increased in the last ten years, but common practices have not been established yet. Here the authors analyze 150 recent challenges and demonstrate that outcome varies based on the metrics used and that limited information reporting hampers reproducibility.
Template matching techniques in computer vision : theory and practice
The detection and recognition of objects in images is a key research topic in the computer vision community.  Within this area, face recognition and interpretation has attracted increasing attention owing to the possibility of unveiling human perception mechanisms, and for the development of practical biometric systems.
Segment anything in medical images
Medical image segmentation is a critical component in clinical practice, facilitating accurate diagnosis, treatment planning, and disease monitoring. However, existing methods, often tailored to specific modalities or disease types, lack generalizability across the diverse spectrum of medical image segmentation tasks. Here we present MedSAM, a foundation model designed for bridging this gap by enabling universal medical image segmentation. The model is developed on a large-scale medical image dataset with 1,570,263 image-mask pairs, covering 10 imaging modalities and over 30 cancer types. We conduct a comprehensive evaluation on 86 internal validation tasks and 60 external validation tasks, demonstrating better accuracy and robustness than modality-wise specialist models. By delivering accurate and efficient segmentation across a wide spectrum of tasks, MedSAM holds significant potential to expedite the evolution of diagnostic tools and the personalization of treatment plans. Segmentation is an important fundamental task in medical image analysis. Here the authors show a deep learning model for efficient and accurate segmentation across a wide range of medical image modalities and anatomies.