Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
18,583 result(s) for "Imaging, Three-Dimensional methods."
Sort by:
Reproducibility of Novel Soft-Tissue Landmarks on Three-Dimensional Human Facial Scan Images in Caucasian and Asian
BackgroundThree-dimensional surface imaging is established in many disciplines for objective facial acquisition regarding anthropometry. Former studies addressed the validation of landmark-based measurements for single race. In order to distinguish racial difference, the reproducibility of the landmark measurements must first be validated.ObjectivesOur purpose is to validate the reproducibility of 46 facial soft-tissue landmarks on x, y, z axes to prove their reliability as 3D reference points. MethodsThe study included 80 European Caucasian and 80 Chinese volunteers. Standardized 3D surface imaging was performed using Vectra 3D system. Two raters identified and defined 46 landmarks (138 coordinates), then repeatedly 3D-imaged volunteers' facial region in separate sessions. Coordinates' reproducibility of landmarks is divided into three categories (< 0.5 mm, < 1 mm, and >1 mm) for intra- and inter-rater reproducibility assessments. ResultsCoordinates' reproducibility of 160 samples was distributed as follows: Intra-rater: < 0.5 mm (45%), < 1 mm (42%), >1 mm (13%); inter-rater: < 0.5 mm (31.2%), < 1 mm (42%), > 1 mm (26.8%). The reproducibility of landmarks in nasal tip region differs slightly between Caucasians and Asians. Compared to females, males typically have higher landmark reproducibility in lip and chin region. However, there were no differences in the reproducibility ranking of landmarks by gender.ConclusionThe majority of the 46 landmarks in the 3D plane are reproducible to 1 mm, which is clinically acceptable. All selected landmarks showed strong consistency across race and gender, suggesting their potential use as reference points in prospective clinical practice.Level of Evidence IVThis journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Usefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgery
The anatomy of the superior mesenteric vessels is complex, yet important, for right-sided colorectal surgery. The usefulness of three-dimensional (3D) printing of these vessels in right hemicolon cancer surgery has rarely been reported. In this prospective clinical study, 61 patients who received laparoscopic surgery for right hemicolon cancer were preoperatively randomized into 3 groups: 3D-printing (20 patients), 3D-image (19 patients), and control (22 patients) groups. Surgery duration, bleeding volume, and number of lymph node dissections were designed to be the primary end points, whereas postoperative complications, post-operative flatus recovery time, duration of hospitalization, patient satisfaction, and medical expenses were designed to be secondary end points. To reduce the influence of including different surgeons in the study, the surgical team was divided into 2 groups based on surgical experience. The duration of surgery for the 3D-printing and 3D-image groups was significantly reduced (138.4 ± 19.5 and 154.7 ± 25.9 min vs. 177.6 ± 24.4 min, P  = 0.000 and P  = 0.006), while the number of lymph node dissections for the these 2 groups was significantly increased (19.1 ± 3.8 and 17.6 ± 3.9 vs. 15.8 ± 3.0, P  = 0.001 and P  = 0.024) compared to the control group. Meanwhile, the bleeding volume for the 3D-printing group was significantly reduced compared to the control group (75.8 ± 30.4 mL vs. 120.9 ± 39.1 mL, P  = 0.000). Moreover, patients in the 3D-printing group reported increased satisfaction in terms of effective communication compared to those in the 3D-image and control groups. Medical expenses decreased by 6.74% after the use of 3D-printing technology. Our results show that 3D-printing technology could reduce the duration of surgery and total bleeding volume and increase the number of lymph node dissections. 3D-printing technology may be more helpful for novice surgeons. Trial registration : Chinese Clinical Trial Registry, ChiCTR1800017161. Registered on 15 July 2018.
Fiji: an open-source platform for biological-image analysis
Presented is an overview of the image-analysis software platform Fiji, a distribution of ImageJ that updates the underlying ImageJ architecture and adds modern software design elements to expand the capabilities of the platform and facilitate collaboration between biologists and computer scientists. Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
3D-CEUS/MRI–CEUS fusion imaging vs 2D-CEUS after locoregional therapies for hepatocellular carcinoma: a multicenter prospective study of therapeutic response evaluation
Objectives To compare the diagnostic accuracy of 3D contrast-enhanced ultrasound (CEUS)/MRI–CEUS fusion imaging with 2D-CEUS in assessing the response of hepatocellular carcinoma (HCC) to locoregional therapies in a multicenter prospective study. Materials and methods A consecutive series of patients with HCC scheduled for locoregional treatment were enrolled between April 2021 and March 2023. Patients were randomly divided into 3D-CEUS/MRI–CEUS fusion imaging group (3D/fusion group) or 2D-CEUS group (2D group). CEUS was performed 1 week before and 4–6 weeks after locoregional treatment. Contrast-enhanced MRI (CE-MRI) 4–6 weeks after treatment was set as the reference standard. CEUS images were evaluated for the presence or absence of viable tumors. Diagnostic performance criteria, including sensitivity, specificity, accuracy, and area under the curve (AUC), were determined for each modality. Results A total of 140 patients were included, 70 patients in the 2D group (mean age, 60.2 ± 10.4 years) and 70 patients in the 3D/fusion group (mean age, 59.8 ± 10.6 years). The sensitivity of the 3D/fusion group was 100.0% (95% CI: 75.9, 100.0), higher than that of the 2D group (55.6%, 95% CI: 22.7, 84.7; p  = 0.019). The specificity of the 3D/fusion group was 96.3% (95% CI: 86.2, 99.4), which was comparable to that of the 2D group (98.4%, 95% CI: 90.0, 99.9; p  = 0.915). The AUC of the 3D/fusion group was 0.98 (95% CI: 0.95, 1.00), higher than that of the 2D group (0.77, 95% CI: 0.56, 0.98; p  = 0.020). Conclusion 3D-CEUS/MRI–CEUS fusion imaging exhibits superior diagnostic accuracy in evaluating the treatment response to locoregional therapies for HCC. Clinical relevance statement 3D-CEUS/MRI–CEUS fusion imaging can be applied for post-treatment assessment of residual tumors in HCC undergoing locoregional treatment, offering potential benefits in terms of accurate diagnosis and clinical management. Key Points Evaluating for HCC recurrence following locoregional therapy is important . 3D-CEUS/MRI–CEUS fusion imaging achieved a higher sensitivity than 2D-CEUS in assessing residual tumors after locoregional therapies . 3D-CEUS/MRI–CEUS fusion imaging can help clinicians intervene early in residual HCC lesions after locoregional treatment .
Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents
The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, \"gold standard\") in cephalometric analysis. The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR.
Automated rotator cuff tear classification using 3D convolutional neural network
Rotator cuff tear (RCT) is one of the most common shoulder injuries. When diagnosing RCT, skilled orthopedists visually interpret magnetic resonance imaging (MRI) scan data. For automated and accurate diagnosis of RCT, we propose a full 3D convolutional neural network (CNN) based method using deep learning. This 3D CNN automatically diagnoses the presence or absence of an RCT, classifies the tear size, and provides 3D visualization of the tear location. To train the 3D CNN, the Voxception-ResNet (VRN) structure was used. This architecture uses 3D convolution filters, so it is advantageous in extracting information from 3D data compared with 2D-based CNNs or traditional diagnosis methods. MRI data from 2,124 patients were used to train and test the VRN-based 3D CNN. The network is trained to classify RCT into five classes (None, Partial, Small, Medium, Large-to-Massive). A 3D class activation map (CAM) was visualized by volume rendering to show the localization and size information of RCT in 3D. A comparative experiment was performed for the proposed method and clinical experts by using randomly selected 200 test set data, which had been separated from training set. The VRN-based 3D CNN outperformed orthopedists specialized in shoulder and general orthopedists in binary accuracy (92.5% vs. 76.4% and 68.2%), top-1 accuracy (69.0% vs. 45.8% and 30.5%), top-1±1 accuracy (87.5% vs. 79.8% and 71.0%), sensitivity (0.92 vs. 0.89 and 0.93), and specificity (0.86 vs. 0.61 and 0.26). The generated 3D CAM provided effective information regarding the 3D location and size of the tear. Given these results, the proposed method demonstrates the feasibility of artificial intelligence that can assist in clinical RCT diagnosis.
Performance with robotic surgery versus 3D- and 2D­laparoscopy during pancreatic and biliary anastomoses in a biotissue model: pooled analysis of two randomized trials
BackgroundRobotic surgery may improve surgical performance during minimally invasive pancreatoduodenectomy as compared to 3D- and 2D-laparoscopy but comparative studies are lacking. This study assessed the impact of robotic surgery versus 3D- and 2D-laparoscopy on surgical performance and operative time using a standardized biotissue model for pancreatico- and hepatico-jejunostomy using pooled data from two randomized controlled crossover trials (RCTs).MethodsPooled analysis of data from two RCTs with 60 participants (36 surgeons, 24 residents) from 11 countries (December 2017–July 2019) was conducted. Each included participant completed two pancreatico- and two hepatico-jejunostomies in biotissue using 3D-robotic surgery, 3D-laparoscopy, or 2D-laparoscopy. Primary outcomes were the objective structured assessment of technical skills (OSATS: 12–60) rating, scored by observers blinded for 3D/2D and the operative time required to complete both anastomoses. Sensitivity analysis excluded participants with excess experience compared to others.ResultsA total of 220 anastomoses were completed (robotic 80, 3D-laparoscopy 70, 2D­laparoscopy 70). Participants in the robotic group had less surgical experience [median 1 (0–2) versus 6 years (4–12), p < 0.001], as compared to the laparoscopic group. Robotic surgery resulted in higher OSATS ratings (50, 43, 39 points, p = .021 and p < .001) and shorter operative time (56.5, 65.0, 81.5 min, p = .055 and p < .001), as compared to 3D- and 2D­laparoscopy, respectively, which remained in the sensitivity analysis.ConclusionIn a pooled analysis of two RCTs in a biotissue model, robotic surgery resulted in better surgical performance scores and shorter operative time for biotissue pancreatic and biliary anastomoses, as compared to 3D- and 2D-laparoscopy.
CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons
Objectives To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Methods Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Results Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). Conclusions 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. Key Points • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.