Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,372 result(s) for "Immediate-Early Proteins"
Sort by:
Virtual Screening Approach to Identify High-Affinity Inhibitors of Serum and Glucocorticoid-Regulated Kinase 1 among Bioactive Natural Products: Combined Molecular Docking and Simulation Studies
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that works under acute transcriptional control by several stimuli, including serum and glucocorticoids. It plays a significant role in the cancer progression and metastasis, as it regulates inflammation, apoptosis, hormone release, neuro-excitability, and cell proliferation. SGK1 has recently been considered as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In the present study, we have performed structure-based virtual high-throughput screening of natural compounds from the ZINC database to find potential inhibitors of SGK1. Initially, hits were selected based on their physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and other drug-like properties. Afterwards, PAINS filter, binding affinities estimation, and interaction analysis were performed to find safe and effective hits. We found four compounds bearing appreciable binding affinity and specificity towards the binding pocket of SGK1. The docking results were complemented by all-atom molecular dynamics simulation for 100 ns, followed by MM/PBSA, and principal component analysis to investigate the conformational changes, stability, and interaction mechanism of SGK1 in-complex with the selected compound ZINC00319000. Molecular dynamics simulation results suggested that the binding of ZINC00319000 stabilizes the SGK1 structure, and it leads to fewer conformational changes. In conclusion, the identified compound ZINC00319000 might be further exploited as a scaffold to develop promising inhibitors of SGK1 for the therapeutic management of associated diseases, including cancer.
Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
SGK1 repression by WT1 may confer a survival advantage to leukemic cells under stress conditions
Increased WT1 mRNA levels are pervasive in acute myeloid leukemia (AML), and this marker has been used to assess the leukemic compartment size after chemotherapy or hematopoietic cell transplants. Little is known about the effects of WT1 on the leukemic cells and their targets. This work used data obtained from gene expression arrays performed on AML samples with high and low WT1 mRNA levels to pinpoint genes that WT1 can regulate. We singled out SGK1 , which showed an inverse correlation between its mRNA levels and WT1 in leukemic cell lines and AML samples. In cellular models, forced expression of WT1 reduced mRNA and protein levels of SGK1 . Furthermore, WT1 repressed the SGK1 promoter activity, and accordingly, WT1 knockdown showed an increased expression of SGK1 . We also detected an inverse correlation between WT1 and SGK1 during leukemic cell-line differentiation. WT1 genetic knockdown displayed decreased cell viability under nutrient deprivation. By contrast, SGK1 knockdown or pharmacologic inhibition increased resistance to apoptosis in response to serum starvation, acting on cell cycle progression. The effects of SGK1 targeting in hematologic conditions merit further investigation.
Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27
Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes. However, the underlying mechanisms remain unclear. Here, we demonstrate that the HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essential mRNA 3’ processing factor CPSF. It thereby induces the assembly of a dead-end 3’ processing complex, blocking mRNA 3’ cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3’ processing for viral and a subset of host transcripts. Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced host shutoff and identify CPSF as an important factor that mediates regulation of transcription termination. These findings have broad implications for understanding the regulation of transcription termination by other viruses, cellular stress and cancer. Herpes simplex virus-1 (HSV-1) infection disrupts transcription termination (DoTT) of host genes, but underlying mechanisms are unclear. Here, Wang et al. show that the HSV-1 immediate early protein ICP27 induces DoTT through interaction with the mRNA 3’ processing factor CPSF and disruption of the processing complex.
Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia
Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain. Neuropathic pain hypersensitivity is known to undergo diurnal variations, although the underlying mechanisms are not clear. Using a sciatic nerve-injury mouse model, the authors find such diurnal changes are mediated by glucocorticoid induced enhancement of ATP release from astrocytes via pannexin-1 hemichannels.
Herpesvirus-mediated stabilization of ICP0 expression neutralizes restriction by TRIM23
Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ₁34.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ₁34.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ₁34.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ₁34.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.
Characterization of the Ictalurid herpesvirus 1 immediate-early gene ORF24 and its potential role in transcriptional regulation in yeast
Herpesviruses adhere to a precise temporal expression model in which immediate-early (IE) genes play a crucial role in regulating the viral life cycle. However, there is a lack of functional research on the IE genes in Ictalurid herpesvirus 1 (IcHV-1). In this study, we identified the IcHV-1 ORF24 as an IE gene via a metabolic inhibition assay, and subcellular analysis indicated its predominant localisation in the nucleus. To investigate its function, we performed yeast reporter assays using an ORF24 fusion protein containing the Gal4-BD domain and found that BD-ORF24 was able to activate HIS3/lacZ reporter genes without the Gal4-AD domain. Our findings provide concrete evidence that ORF24 is indeed an IE gene that likely functions as a transcriptional regulator during IcHV-1 infection. This work contributes to our understanding of the molecular mechanisms underlying fish herpesvirus IE gene expression.
Chronic restraint stress attenuates p53 function and promotes tumorigenesis
Epidemiological studies strongly suggest that chronic psychological stress promotes tumorigenesis. However, its direct link in vivo and the underlying mechanisms that cause this remain unclear. This study provides direct evidence that chronic stress promotes tumorigenesis in vivo; chronic restraint, a well-established mouse model to induce chronic stress, greatly promotes ionizing radiation (IR)-induced tumorigenesis in p53+/– mice. The tumor suppressor protein p53 plays a central role in tumor prevention. Loss or attenuation of p53 function contriubutes greatly to tumorigenesis. We found that chronic restraint decreases the levels and function of p53 in mice, and furthermore, promotes the growth of human xenograft tumors in a largely p53-dependent manner. Our results show that glucocorticoids elevated during chronic restraint mediate the effect of chronic restraint on p53 through the induction of serum- and glucocorticoid-induced protein kinase (SGK1), which in turn increases MDM2 activity and decreases p53 function. Taken together, this study demonstrates that chronic stress promotes tumorigenesis in mice, and the attenuation of p53 function is an important part of the underlying mechanism, which can be mediated by glucocortcoids elevated during chronic restraint.
A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter
The cryo-electron microscopy structure of human TAP transporter, a peptide transporter central to MHC class I antigen presentation and cellular immunity, in complex with the herpes simplex virus protein ICP47. A viral immune evasion mechanism Jue Chen and colleagues provide the first cryo-electron microscopy structure of the TAP transporter, a peptide transporter central to MHC class I antigen presentation and cellular immunity. The authors solve the structure of TAP in complex with the herpes virus protein ICP47, and reveal how the herpes virus protein plugs a long helical hairpin into the peptide translocation pathway of TAP, thereby blocking viral antigens from entering the endoplasmic reticulum and facilitating immune evasion. Cellular immunity against viral infection and tumour cells depends on antigen presentation by major histocompatibility complex class I (MHC I) molecules. Intracellular antigenic peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I molecules, which are exported to the cell surface and present peptides to the immune system 1 . Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumour development. To escape immune surveillance, some viruses have evolved strategies either to downregulate TAP expression or directly inhibit TAP activity. So far, neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. Here we describe the cryo-electron microscopy structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. Here we show that the 12 transmembrane helices and 2 cytosolic nucleotide-binding domains of the transporter adopt an inward-facing conformation with the two nucleotide-binding domains separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and prevents nucleotide-binding domain closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the endoplasmic reticulum, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.
Mycl, activated by Sgk1-phosphorylated Stat3, mediates osteoclastogenesis via Ctsk transcriptional regulation
Osteoclast differentiation is essential for bone homeostasis, yet its molecular regulation remains incompletely understood. Here, we identify serum/glucocorticoid-regulated kinase 1 (Sgk1), an AGC kinase responsive to hormonal signals, as a key regulator of osteoclastogenesis. Mechanistically, inhibition of Sgk1 reduces Stat3 phosphorylation at Tyr705, leading to the downregulation of Mycl, a less characterized member of the MYC family of transcription factors. We demonstrate that Mycl directly binds to the Ctsk promoter, and functional assays confirm its critical role; Mycl overexpression rescued the osteoclast differentiation impairment caused by Sgk1 inhibition. In vivo , treatment with the Sgk1 inhibitor GSK650394 increased trabecular bone mass and enhanced mechanical strength without compromising osteoblast activity. Collectively, our findings define a novel Sgk1-Stat3-Mycl-Ctsk signaling axis that contributes to osteoclastogenesis and suggest that Sgk1 inhibition represent a potential therapeutic strategy for osteoporosis.