Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
550 result(s) for "Immunity, Heterologous"
Sort by:
Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections
Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
Heterologous Immunity Between SARS-CoV-2 and Pathogenic Bacteria
Heterologous immunity, when the memory T cell response elicited by one pathogen recognizes another pathogen, has been offered as a contributing factor for the high variability in coronavirus disease 2019 (COVID-19) severity outcomes. Here we demonstrate that sensitization with bacterial peptides can induce heterologous immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) derived peptides and that vaccination with the SARS-CoV-2 spike protein can induce heterologous immunity to bacterial peptides. Using in silico prediction methods, we identified 6 bacterial peptides with sequence homology to either the spike protein or non-structural protein 3 (NSP3) of SARS-CoV-2. Notwithstanding the effects of bystander activation, in vitro co-cultures showed that all individuals tested ( n =18) developed heterologous immunity to SARS-CoV-2 peptides when sensitized with the identified bacterial peptides. T cell recall responses measured included cytokine production (IFN-γ, TNF, IL-2), activation (CD69) and proliferation (CellTrace). As an extension of the principle of heterologous immunity between bacterial pathogens and COVID-19, we tracked donor responses before and after SARS-CoV-2 vaccination and measured the cross-reactive T cell responses to bacterial peptides with similar sequence homology to the spike protein. We found that SARS-CoV-2 vaccination could induce heterologous immunity to bacterial peptides. These findings provide a mechanism for heterologous T cell immunity between common bacterial pathogens and SARS-CoV-2, which may explain the high variance in COVID-19 outcomes from asymptomatic to severe. We also demonstrate proof-of-concept that SARS-CoV-2 vaccination can induce heterologous immunity to pathogenic bacteria derived peptides.
Effect of an Early Dose of Measles Vaccine on Morbidity Between 18 Weeks and 9 Months of Age: A Randomized, Controlled Trial in Guinea-Bissau
Background. Children in Guinea-Bissau receive measles vaccine (MV) at 9 months of age, but studies have shown that an additional dose before 9 months of age might have beneficial nonspecific effects. Within a randomized trial designed to examine nonspecific effects of early MV receipt on mortality, we conducted a substudy to investigate the effect of early MV receipt on morbidity. Methods. Children were randomly assigned at a ratio of 2:1 to receive 2 doses of MV at 18 weeks and age 9 months (intervention group) or 1 dose of MV at age 9 months, in accordance with current practice (control group). Children were visited weekly from enrollment to age 9 months; the mother reported morbidity, and the field assistants examined the children. Using Cox and binomial regression models, we compared the 2 randomization groups. Results. Among the 1592 children, early measles vaccination was not associated with a higher risk of the well-known adverse events of fever, rash, and convulsions within the first 14 days. From 15 days after randomization to age 9 months, early measles vaccination was associated with reductions in maternally reported diarrhea (hazard ratio [HR], 0.89; 95% confidence interval [CI], .82–.97), vomiting (HR, 0.86; 95% CI, .75–.98), and fever (HR, 0.93; 95% CI, .87–1.00). Conclusion. Early MV receipt was associated with reduced general morbidity in the following months, supporting that early MV receipt may improve the general health of children.
Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires
Fifty years after the discovery of Epstein-Barr virus (EBV), it remains unclear how primary infection with this virus leads to massive CD8 T-cell expansion and acute infectious mononucleosis (AIM) in young adults. AIM can vary greatly in severity, from a mild transient influenza-like illness to a prolonged severe syndrome. We questioned whether expansion of a unique HLA-A2.01-restricted, cross-reactive CD8 T-cell response between influenza virus A-M1 58 (IAV-M1) and EBV BMLF1 280 (EBV-BM) could modulate the immune response to EBV and play a role in determining the severity of AIM in 32 college students. Only ex vivo total IAV-M1 and IAV-M1+EBV-BM cross-reactive tetramer + frequencies directly correlated with AIM severity and were predictive of severe disease. Expansion of specific cross-reactive memory IAV-M1 T-cell receptor (TCR) Vβ repertoires correlated with levels of disease severity. There were unique profiles of qualitatively different functional responses in the cross-reactive and EBV-specific CD8 T-cell responses in each of the three groups studied, severe-AIM patients, mild-AIM patients, and seropositive persistently EBV-infected healthy donors, that may result from differences in TCR repertoire use. IAV-M1 tetramer + cells were functionally cross-reactive in short-term cultures, were associated with the highest disease severity in AIM, and displayed enhanced production of gamma interferon, a cytokine that greatly amplifies immune responses, thus frequently contributing to induction of immunopathology. Altogether, these data link heterologous immunity via CD8 T-cell cross-reactivity to CD8 T-cell repertoire selection, function, and resultant disease severity in a common and important human infection. In particular, it highlights for the first time a direct link between the TCR repertoire with pathogenesis and the diversity of outcomes upon pathogen encounter. IMPORTANCE The pathogenic impact of immune responses that by chance cross-react to unrelated viruses has not been established in human infections. Here, we demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-Barr virus (EBV)-induced disease prevalent in young adults but not children, is associated with increased frequencies of T cells cross-reactive to EBV and the commonly acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of these cross-reactive T cells differed between mild- and severe-AIM patients, most likely because these two groups of patients had selected different memory TCR repertoires in response to IAV infections encountered earlier. This heterologous immunity may explain variability in disease outcome and why young adults with more-developed IAV-specific memory T-cell pools have more-severe disease than children, who have less-developed memory pools. This study provides a new framework for understanding the role of heterologous immunity in human health and disease and highlights an important developing field examining the role of T-cell repertoires in the mediation of immunopathology. The pathogenic impact of immune responses that by chance cross-react to unrelated viruses has not been established in human infections. Here, we demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-Barr virus (EBV)-induced disease prevalent in young adults but not children, is associated with increased frequencies of T cells cross-reactive to EBV and the commonly acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of these cross-reactive T cells differed between mild- and severe-AIM patients, most likely because these two groups of patients had selected different memory TCR repertoires in response to IAV infections encountered earlier. This heterologous immunity may explain variability in disease outcome and why young adults with more-developed IAV-specific memory T-cell pools have more-severe disease than children, who have less-developed memory pools. This study provides a new framework for understanding the role of heterologous immunity in human health and disease and highlights an important developing field examining the role of T-cell repertoires in the mediation of immunopathology.
Antibodies to Cryptic Epitopes in Distant Homologues Underpin a Mechanism of Heterologous Immunity between Plasmodium vivax PvDBP and Plasmodium falciparum VAR2CSA
In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium . Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains. Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum , we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro . The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes. IMPORTANCE In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium . Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains.
Editorial: Heterologous Immunity: Implications and Applications in Vaccines and Immunotherapies
[...]exposure to microbiota and various pathogens, and routine vaccination programs induce a considerable pool of cross-reactive T cells as well as antibodies able to respond to a completely different pathogen. [...]for influenza viruses, they suggest that future vaccine development efforts should be toward a universal vaccine focused on broader T cell responses. [...]Lee et al.showed that mincle and STING-stimulating adjuvant formulated with a foot and mouth disease virus vaccine induced a robust and long-lasting cellular and humoral memory response across diverse species in mice, cattle and pigs.
Impact of Microbiota: A Paradigm for Evolving Herd Immunity against Viral Diseases
Herd immunity is the most critical and essential prophylactic intervention that delivers protection against infectious diseases at both the individual and community level. This process of natural vaccination is immensely pertinent to the current context of a pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection around the globe. The conventional idea of herd immunity is based on efficient transmission of pathogens and developing natural immunity within a population. This is entirely encouraging while fighting against any disease in pandemic circumstances. A spatial community is occupied by people having variable resistance capacity against a pathogen. Protection efficacy against once very common diseases like smallpox, poliovirus or measles has been possible only because of either natural vaccination through contagious infections or expanded immunization programs among communities. This has led to achieving herd immunity in some cohorts. The microbiome plays an essential role in developing the body’s immune cells for the emerging competent vaccination process, ensuring herd immunity. Frequency of interaction among microbiota, metabolic nutrients and individual immunity preserve the degree of vaccine effectiveness against several pathogens. Microbiome symbiosis regulates pathogen transmissibility and the success of vaccination among different age groups. Imbalance of nutrients perturbs microbiota and abrogates immunity. Thus, a particular population can become vulnerable to the infection. Intestinal dysbiosis leads to environmental enteropathy (EE). As a consequence, the generation of herd immunity can either be delayed or not start in a particular cohort. Moreover, disparities of the protective response of many vaccines in developing countries outside of developed countries are due to inconsistencies of healthy microbiota among the individuals. We suggested that pan-India poliovirus vaccination program, capable of inducing herd immunity among communities for the last 30 years, may also influence the inception of natural course of heterologous immunity against SARS-CoV-2 infection. Nonetheless, this anamnestic recall is somewhat counterintuitive, as antibody generation against original antigens of SARS-CoV-2 will be subdued due to original antigenic sin.
The effects of vitamin A supplementation with measles vaccine on leucocyte counts and in vitro cytokine production
As WHO recommends vitamin A supplementation (VAS) at vaccination contacts after age 6 months, many children receive VAS together with measles vaccine (MV). We aimed to investigate the immunological effect of VAS given with MV. Within a randomised placebo-controlled trial investigating the effect on overall mortality of providing VAS with vaccines in Guinea-Bissau, we conducted an immunological sub-study of VAS v. placebo with MV, analysing leucocyte counts, whole blood in vitro cytokine production, vitamin A status and concentration of C-reactive protein (CRP). VAS compared with placebo was associated with an increased frequency of CRP≥5 mg/l (28 v. 12 %; P=0·005). Six weeks after supplementation, VAS had significant sex-differential effects on leucocyte, lymphocyte, monocyte and basophil cell counts, decreasing them in males but increasing them in females. Mainly in females, the effect of VAS on cytokine responses differed by previous VAS: in previous VAS recipients, VAS increased the pro-inflammatory and T helper cell type 1 (Th1) cytokine responses, whereas VAS decreased these responses in previously unsupplemented children. In previous VAS recipients, VAS was associated with increased IFN-γ responses to phytohaemagglutinin in females (geometric mean ratio (GMR): 3·97; 95 % CI 1·44, 10·90) but not in males (GMR 0·44; 95 % CI 0·14, 1·42); the opposite was observed in previously unsupplemented children. Our results corroborate that VAS provided with MV has immunological effects, which may depend on sex and previous VAS. VAS may increase the number of leucocytes, but also repress both the innate and lymphocyte-derived cytokine responses in females, whereas this repression may be opposite if the females have previously received VAS.
Establishment of functional influenza virus-specific CD8+ T cell memory pools after intramuscular immunization
The emergence of the avian-origin influenza H7N9 virus and its pandemic potential has highlighted the ever-present need to develop vaccination approaches to induce cross-protective immunity. In this study, we examined the establishment of cross-reactive CD8+ T cell immunity in mice following immunization with live A/Puerto Rico/8/1934 (PR8; H1N1) influenza virus via two non-productive inoculation routes. We found that immunization via the intramuscular (IM) route established functional influenza-virus specific memory CD8+ T cell pools capable of cross-reactive recall responses. Epitope-specific primary, memory and recall CD8+ T-cell responses induced by the IM route, highly relevant to human influenza immunisations, were of comparable magnitude and quality to those elicited by the intraperitoneal (IP) priming, commonly used in mice. Furthermore, IM immunisation resulted in lower lung viral titres following heterologous challenge with A/Aichi/68 (X31; H3N2) compared to the IP route. Examining the ability of DCs from lymphoid organs to present viral antigen revealed that immune induction following IM immunization occurred in draining lymph nodes, while immunization via the IP route resulted in the priming of responses in distal lymphoid organs, indicative of a systemic distribution of antigen. No major differences in the pulmonary cytokine environment of immunized animals following X31 challenge were observed that could account for the improved heterologous protection induced by the IM route. However, while both routes induced similar levels of PR8-specific antibodies, higher levels of cross-reactive antibodies against X31 were induced following IM inoculation. Our data demonstrate how non-replicative routes of infection can induce efficient cross-reactive CD8+ T cell responses and strong strain-specific antibody responses, with the additional benefit from IM priming of enhanced heterosubtypic antibody production.
Unusual positive effects from vaccines need to be reported – They represent a resource that could lead to new treatment strategies
[...]if a positive or negative effect on a chronic disease occurs within the time frame when the immune system is selectively expanding in response to these defined antigens, we have a window of opportunity to determine mechanisms that can tip the balance between cure and chronic disease. [...]compelling epidemiological evidence for non-specific effects of vaccines is now backed by immunological studies supporting that vaccines may have effects on the immune system which go far beyond the effect on the target disease.