Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,800 result(s) for "Immunity (cell-mediated)"
Sort by:
Arenavirus-Based Vectors Generate Robust SIV Immunity in Non-Human Primates
Arenavirus-based vectors are being investigated as therapeutic vaccine candidates with the potential to elicit robust CD8 T-cell responses. We compared the immunogenicity of replicating (artPICV and artLCMV) and non-replicating (rPICV and rLCMV) arenavirus-based vectors expressing simian immunodeficiency virus (SIV) Gag and Envelope (Env) immunogens in treatment-naïve non-human primates. Heterologous regimens with non-replicating and replicating vectors elicited more robust SIV IFN-γ responses than a homologous regimen, and replicating vectors elicited significantly higher cellular immunogenicity than non-replicating vectors. The heterologous regimen elicited high anti-Env antibody titers when administered intravenously, with replicating vectors inducing significantly higher titers than non-replicating vectors. Intramuscular immunization resulted in more durable antibody responses than intravenous immunization for both vector platforms, with no difference between the replicating and non-replicating vectors. Overall, both replicating and non-replicating arenavirus vectors generated robust T- and B-cell-mediated immunity to SIV antigens in treatment-naïve non-human primates, supporting further evaluation of these vectors in a clinical setting for HIV therapy.
Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study
Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.
Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination
The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.
IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α
The prevailing model of protective immunity to tuberculosis is that CD4 T cells produce the cytokine IFN-γ to activate bactericidal mechanisms in infected macrophages. Although IFN-γ-independent CD4 T cell based control of M . tuberculosis infection has been demonstrated in vivo it is unclear whether CD4 T cells are capable of directly activating macrophages to control infection in the absence of IFN-γ. We developed a co-culture model using CD4 T cells isolated from the lungs of infected mice and M . tuberculosis -infected murine bone marrow-derived macrophages (BMDMs) to investigate mechanisms of CD4 dependent control of infection. We found that even in the absence of IFN-γ signaling, CD4 T cells drive macrophage activation, M1 polarization, and control of infection. This IFN-γ-independent control of infection requires activation of the transcription factor HIF-1α and a shift to aerobic glycolysis in infected macrophages. While HIF-1α activation following IFN-γ stimulation requires nitric oxide, HIF-1α-mediated control in the absence of IFN-γ is nitric oxide-independent, indicating that distinct pathways can activate HIF-1α during infection. We show that CD4 T cell-derived GM-CSF is required for IFN-γ-independent control in BMDMs, but that recombinant GM-CSF is insufficient to control infection in BMDMs or alveolar macrophages and does not rescue the absence of control by GM-CSF-deficient T cells. In contrast, recombinant GM-CSF controls infection in peritoneal macrophages, induces lipid droplet biogenesis, and also requires HIF-1α for control. These results advance our understanding of CD4 T cell-mediated immunity to M . tuberculosis , reveal important differences in immune activation of distinct macrophage types, and outline a novel mechanism for the activation of HIF-1α. We establish a previously unknown functional link between GM-CSF and HIF-1α and provide evidence that CD4 T cell-derived GM-CSF is a potent bactericidal effector.
H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation
Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to \"tolerate\" the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers' risk following influenza virus infection have not been fully elucidated. We used pregnant BALB/c mice during mid- to late gestation to determine the impact of a sub-lethal infection with A/Brisbane/59/07 H1N1 seasonal influenza virus on completion of gestation. Maternal and fetal health status was closely monitored and compared to infected non-pregnant mice. Severity of infection during pregnancy was correlated with premature rupture of amniotic membranes (PROM), fetal survival and body weight at birth, lung viral load and degree of systemic and tissue inflammation mediated by innate and adaptive immune responses. Here we report that influenza virus infection resulted in dysregulation of inflammatory responses that led to pre-term labor, impairment of fetal growth, increased fetal mortality and maternal morbidity. We observed significant compartment-specific immune responses correlated with changes in hormonal synthesis and regulation. Dysregulation of progesterone, COX-2, PGE2 and PGF2α expression in infected pregnant mice was accompanied by significant remodeling of placental architecture and upregulation of MMP-9 early after infection. Collectively these findings demonstrate the potential of a seasonal influenza virus to initiate a powerful pro-abortive mechanism with adverse outcomes in fetal health.
Investigation of CD4 and CD8 T cell-mediated protection against influenza A virus in a cohort study
Background The protective effect of T cell-mediated immunity against influenza virus infections in natural settings remains unclear, especially in seasonal epidemics. Methods To explore the potential of such protection, we analyzed the blood samples collected longitudinally in a community-based study and covered the first wave of pandemic H1N1 (pH1N1), two subsequent pH1N1 epidemics, and three seasonal H3N2 influenza A epidemics (H3N2) for which we measured pre-existing influenza virus-specific CD4 and CD8 T cell responses by intracellular IFN-γ staining assay for 965 whole blood samples. Results Based on logistic regression, we found that higher pre-existing influenza virus-specific CD4 and CD8 T cell responses were associated with lower infection odds for corresponding subtypes. Every fold increase in H3N2-specific CD4 and CD8 T cells was associated with 28% (95% CI 8%, 44%) and 26% (95% CI 8%, 41%) lower H3N2 infection odds, respectively. Every fold increase in pre-existing seasonal H1N1 influenza A virus (sH1N1)-specific CD4 and CD8 T cells was associated with 28% (95% CI 11%, 41%) and 22% (95% CI 8%, 33%) lower pH1N1 infection odds, respectively. We observed the same associations for individuals with pre-epidemic hemagglutination inhibition (HAI) titers < 40. There was no correlation between pre-existing influenza virus-specific CD4 and CD8 T cell response and HAI titer. Conclusions We demonstrated homosubtypic and cross-strain protection against influenza infections was associated with T cell response, especially CD4 T cell response. These protections were independent of the protection associated with HAI titer. Therefore, T cell response could be an assessment of individual and population immunity for future epidemics and pandemics, in addition to using HAI titer.
Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial
Cytomegalovirus end-organ disease can be prevented by giving ganciclovir when viraemia is detected in allograft recipients. Values of viral load correlate with development of end-organ disease and are moderated by pre-existing natural immunity. Our aim was to determine whether vaccine-induced immunity could do likewise. We undertook a phase-2 randomised placebo controlled trial in adults awaiting kidney or liver transplantation at the Royal Free Hospital, London, UK. Exclusion criteria were pregnancy, receipt of blood products (except albumin) in the previous 3 months, and simultaneous multiorgan transplantation. 70 patients seronegative and 70 seropositive for cytomegalovirus were randomly assigned from a scratch-off randomisation code in a 1:1 ratio to receive either cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant or placebo, each given at baseline, 1 month and 6 months later. If a patient was transplanted, no further vaccinations were given and serial blood samples were tested for cytomegalovirus DNA by real-time quantitative PCR (rtqPCR). Any patient with one blood sample containing more than 3000 cytomegalovirus genomes per mL received ganciclovir until two consecutive undetectable cytomegalovirus DNA measurements. Safety and immunogenicity were coprimary endpoints and were assessed by intention to treat in patients who received at least one dose of vaccine or placebo. This trial is registered with ClinicalTrials.gov, NCT00299260. 67 patients received vaccine and 73 placebo, all of whom were evaluable. Glycoprotein-B antibody titres were significantly increased in both seronegative (geometric mean titre 12 537 (95% CI 6593–23 840) versus 86 (63–118) in recipients of placebo recipients; p<0·0001) and seropositive (118 395; 64 503–217 272) versus 24 682 (17 909–34 017); p<0·0001) recipients of vaccine. In those who developed viraemia after transplantation, glycoprotein-B antibody titres correlated inversely with duration of viraemia (p=0·0022). In the seronegative patients with seropositive donors, the duration of viraemia (p=0·0480) and number of days of ganciclovir treatment (p=0·0287) were reduced in vaccine recipients. Although cytomegalovirus disease occurs in the context of suppressed cell-mediated immunity post-transplantation, humoral immunity has a role in reduction of cytomegalovirus viraemia. Vaccines containing cytomegalovirus glycoprotein B merit further assessment in transplant recipients. National Institute of Allergy and Infectious Diseases, Grant R01AI051355 and Wellcome Trust, Grant 078332. Sponsor: University College London (UCL).
“Trained immunity” from Mycobacterium spp. exposure or BCG vaccination and COVID-19 outcomes
Protective variables for Coronavirus Disease 2019 (COVID-19) are unknown. \"Trained immunity\" of the populace as a result of Bacille Calmette-Guérin (BCG) vaccination policy implementation and coverage had been suggested to be one of the factors responsible for the differential impact of COVID-19 on different countries. Several trials are underway to evaluate the potential protective role of BCG vaccination in COVID-19. However, the lack of clarity on the use of appropriate controls concerning the measures of \"trained immunity\" or the heterologous cell-mediated immunity conferred by BCG vaccination has been a cause of concern leading to more confusion as exemplified by a recently concluded trial in Israel that failed to find any protective correlation with regard to BCG vaccination. Whereas, when we analyze the COVID-19 epidemiological data of European countries without any regard for BCG vaccination policy but with similar age distribution, comparable confounding variables, and the stage of the pandemic, the prevalence of tuberculin immunoreactivity-a measure of cell-mediated immunity persistence as a result of Mycobacterium spp. (including BCG vaccine) exposure of the populations-is found consistently negatively correlated with COVID-19 infections and mortality. We seek to draw attention toward the inclusion of controls for underlying \"trained immunity\" and heterologous cell-mediated immunity prevalence that may be preexisting or resulting from the intervention (e.g., BCG vaccine) in such trials to arrive at more dependable conclusions concerning potential benefit from them.
Human Papillomavirus Vaccines – Immune Responses
► Antibody is the mechanism of protection for HPV VLP vaccines ► No immune correlate for the protection ► Role of antibody affinity, avidity, isotype not known. Prophylactic human papillomavirus (HPV) virus-like particle (VLP) vaccines are highly effective. The available evidence suggests that neutralising antibody is the mechanism of protection. However, despite the robust humoral response elicited by VLP vaccines, there is no immune correlate, no minimum level of antibody, or any other immune parameter, that predicts protection against infection or disease. The durability of the antibody response and the importance of antibody isotype, affinity and avidity for vaccine effectiveness are discussed. Once infection and disease are established, then cellular immune responses are essential to kill infected cells. These are complex processes and understanding the local mucosal immune response is a prerequisite for the rational design of therapeutic HPV vaccines. This article forms part of a special supplement entitled “Comprehensive Control of HPV Infections and Related Diseases” Vaccine Volume 30, Supplement 5, 2012.
Immune responses in multiple hosts to Nucleocapsid Protein (NP) of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)
In 2019, the World Health Organization declared 3 billion to be at risk of developing Crimean Congo Hemorrhagic Fever (CCHF). The causative agent of this deadly infection is CCHFV. The data related to the biology and immunology of CCHFV are rather scarce. Due to its indispensable roles in the viral life cycle, NP becomes a logical target for detailed viral immunology studies. In this study, humoral immunity to NP was investigated in CCHF survivors, as well as in immunized mice and rabbits. Abundant antibody response against NP was demonstrated both during natural infection in humans and following experimental immunizations in mice and rabbits. Also, cellular immune responses to recombinant NP (rNP) was detected in multispecies. This study represents the most comprehensive investigation on NP as an inducer of both humoral and cellular immunity in multiple hosts and proves that rNP is an excellent candidate warranting further immunological studies specifically on vaccine investigations.