Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
572 result(s) for "ImmunoSpot"
Sort by:
Multiplex Identification of Antigen-Specific T Cell Receptors Using a Combination of Immune Assays and Immune Receptor Sequencing
Monitoring antigen-specific T cells is critical for the study of immune responses and development of biomarkers and immunotherapeutics. We developed a novel multiplex assay that combines conventional immune monitoring techniques and immune receptor repertoire sequencing to enable identification of T cells specific to large numbers of antigens simultaneously. We multiplexed 30 different antigens and identified 427 antigen-specific clonotypes from 5 individuals with frequencies as low as 1 per million T cells. The clonotypes identified were validated several ways including repeatability, concordance with published clonotypes, and high correlation with ELISPOT. Applying this technology we have shown that the vast majority of shared antigen-specific clonotypes identified in different individuals display the same specificity. We also showed that shared antigen-specific clonotypes are simpler sequences and are present at higher frequencies compared to non-shared clonotypes specific to the same antigen. In conclusion this technology enables sensitive and quantitative monitoring of T cells specific for hundreds or thousands of antigens simultaneously allowing the study of T cell responses with an unprecedented resolution and scale.
Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine
Successful phase 3 trial outcomes have been reported for numerous vaccines that induce robust humoral and cellular immune responses against the SARS-CoV-2 spike protein.1–6 To gain rapid control of accelerating cases and maximise public health impact, the UK Government has adopted the strategy of delaying second vaccination to 12 weeks. 21 (29%) participants had evidence of previous SARS-CoV-2 infection: 16 with positive baseline serology, and five further with strong T-cell responses to non-spike antigens post-vaccination (>100 spot forming units [SFU] per 106 peripheral blood mononuclear cells [PBMC]). [...]those with serological evidence of previous disease at baseline mount robust antibody and T-cell responses after a single dose of vaccine.
Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer
An autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8 ⁺ T cells, the mice, like human patients with PDA, did not respond to two immunological checkpoint antagonists that promote the function of T cells: anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (α-PD-L1). Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). The depletion of the FAP ⁺ stromal cell also uncovered the antitumor effects of α-CTLA-4 and α-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T-cell checkpoint antagonists. Three findings suggested that chemokine (C-X-C motif) ligand 12 (CXCL12) explained the overriding immunosuppression by the FAP ⁺ cell: T cells were absent from regions of the tumor containing cancer cells, cancer cells were coated with the chemokine, CXCL12, and the FAP ⁺ CAF was the principal source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor chemokine (C-X-C motif) receptor 4 inhibitor, induced rapid T-cell accumulation among cancer cells and acted synergistically with α-PD-L1 to greatly diminish cancer cells, which were identified by their loss of heterozygosity of Trp53 gene. The residual tumor was composed only of premalignant epithelial cells and inflammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP ⁺ CAF, may direct tumor immune evasion in a model of human PDA.
Preformed Frequencies of Cytomegalovirus (CMV)–Specific Memory T and B Cells Identify Protected CMV-Sensitized Individuals Among Seronegative Kidney Transplant Recipients
Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection.
Anti-CCR4 mAb selectively depletes effector-type FoxP3⁺CD4⁺ regulatory T cells, evoking antitumor immune responses in humans
CD4 ⁺ Treg cells expressing the transcription factor FOXP3 (forkhead box P3) are abundant in tumor tissues and appear to hinder the induction of effective antitumor immunity. A substantial number of T cells, including Treg cells, in tumor tissues and peripheral blood express C-C chemokine receptor 4 (CCR4). Here we show that CCR4 was specifically expressed by a subset of terminally differentiated and most suppressive CD45RA ⁻FOXP3 ʰⁱCD4 ⁺ Treg cells [designated effector Treg (eTreg) cells], but not by CD45RA ⁺FOXP3 ˡᵒCD4 ⁺ naive Treg cells, in peripheral blood of healthy individuals and cancer patients. In melanoma tissues, CCR4 ⁺ eTreg cells were predominant among tumor-infiltrating FOXP3 ⁺ T cells and much higher in frequency compared with those in peripheral blood. With peripheral blood lymphocytes from healthy individuals and melanoma patients, ex vivo depletion of CCR4 ⁺ T cells and subsequent in vitro stimulation of the depleted cell population with the cancer/testis antigen NY-ESO-1 efficiently induced NY-ESO-1–specific CD4 ⁺ T cells. Nondepletion failed in the induction. The magnitude of the responses was comparable with total removal of FOXP3 ⁺ Treg cells by CD25 ⁺ T-cell depletion. CCR4 ⁺ T-cell depletion also augmented in vitro induction of NY-ESO-1–specific CD8 ⁺ T cells in melanoma patients. Furthermore, in vivo administration of anti-CCR4 mAb markedly reduced the eTreg-cell fraction and augmented NY-ESO-1–specific CD8 ⁺ T-cell responses in an adult T-cell leukemia-lymphoma patient whose leukemic cells expressed NY-ESO-1. Collectively, these findings indicate that anti-CCR4 mAb treatment is instrumental for evoking and augmenting antitumor immunity in cancer patients by selectively depleting eTreg cells.
Diagnostic value of combined islet antigen‐reactive T cells and autoantibodies assays for type 1 diabetes mellitus
Aims/Introduction Type 1 diabetes mellitus is a T cell‐mediated autoimmune disease. However, the determination of the autoimmune status of type 1 diabetes mellitus relies on islet autoantibodies (Abs), as T‐cell assay is not routinely carried out. This study aimed to investigate the diagnostic value of combined assay of islet antigen‐specific T cells and Abs in type 1 diabetes mellitus patients. Materials and Methods A total of 54 patients with type 1 diabetes mellitus and 56 healthy controls were enrolled. Abs against glutamic acid decarboxylase (GAD), islet antigen‐2 and zinc transporter 8 were detected by radioligand assay. Interferon‐γ‐secreting T cells responding to glutamic acid decarboxylase 65 and C‐peptide (CP) were measured by enzyme‐linked immunospot. Results The positive rate for T‐cell responses was significantly higher in patients with type 1 diabetes mellitus than that in controls (P < 0.001). The combined positive rate of Abs and T‐cell assay was significantly higher than that of Abs assay alone (85.2% vs 64.8%, P = 0.015). A significant difference in fasting CP level was found between the T+ and T– groups (0.07 ± 0.05 vs 0.11 ± 0.09 nmol/L, P = 0.033). Furthermore, levels of fasting CP and postprandial CP were both lower in the Ab−T+ group than the Ab−T− group (fasting CP 0.06 ± 0.05 vs 0.16 ± 0.12 nmol/L, P = 0.041; postprandial CP 0.12 ± 0.13 vs 0.27 ± 0.12 nmol/L, P = 0.024). Conclusions Enzyme‐linked immunospot assays in combination with Abs detection could improve the diagnostic sensitivity of autoimmune diabetes. Type 1 diabetes mellitus is considered as a T cell‐mediated autoimmune disease. However, the determination of autoimmune status in type 1 diabetes mellitus is based on islet autoantibodies clinically, which can be absent in the case of idiopathic type 1 diabetes. In the present study, islet antigen‐reactive T‐cell assay in combination with Abs detection could improve the diagnostic sensitivity of autoimmune diabetes.
ELISpot for measuring human immune responses to vaccines
The enzyme-linked immunosorbent spot (ELISpot) assay is one of the most commonly used methods to measure antigen-specific T cells in both mice and humans. Some of the primary reasons for the popularity of the method are that ELISpot is highly quantitative, can measure a broad range of magnitudes of response and is capable of assessing critical cellular immune-related activities such as IFN-γ secretion and granzyme B release. Furthermore, ELISpot is adaptable not only to the evaluation of a variety of T-cell functions, but also to B cells and innate immune cells. It is no wonder that ELISpot has evolved from a research tool to a clinical assay. Recent Phase I and II studies of cancer vaccines, tested in a variety of malignancies, have suggested that ELISpot may be a useful biomarker assay to predict clinical benefit after therapeutic immune modulation. This article will discuss the most common applications of ELISpot, overview the efforts that have been undertaken to standardize the assay and apply the method in the analysis of human clinical trials, and describe some important steps in the process of developing a clinical-grade ELISpot.
VIP-SPOT: an Innovative Assay To Quantify the Productive HIV-1 Reservoir in the Monitoring of Cure Strategies
Current efforts aimed at finding a definitive cure for HIV-1 infection are hampered mainly by the persistence of a viral reservoir in latently infected cells. While complete viral eradication from the body remains elusive, finding a functional cure to enable control of viremia without the need for continuous treatment is a key goal. Improved assays are critical to the successful implementation of novel HIV-1 cure strategies, given the limited ability of currently available assays to quantify true effects on the viral reservoir. As interventions based on immune clearance target infected cells producing viral antigens, irrespective of whether the viruses generated are infectious or not, we developed a novel assay to identify viral protein production at the single-cell level. The novel viral protein spot (VIP-SPOT) assay, based on the enzyme-linked ImmunoSpot (ELISpot) approach, quantifies the frequency of CD4 + T cells that produce HIV antigen upon stimulation. The performance of the VIP-SPOT assay was validated in samples from viremic ( n  = 18) and antiretroviral therapy (ART)-treated subjects ( n  = 35), and the results were compared with total and intact proviral DNA and plasma viremia. The size of the functional reservoir, measured by VIP-SPOT, correlates with total HIV-1 DNA and, more strongly, with intact proviruses. However, the frequency of HIV antigen-producing cells is 100-fold lower than that of intact proviruses, thus suggesting that most latently infected cells harboring full-length proviruses are not prone to reactivation. Furthermore, VIP-SPOT was useful for evaluating the efficacy of latency reversing agents (LRAs) in primary cells. VIP-SPOT is a novel tool for measuring the size of the functional HIV-1 reservoir in a rapid, sensitive, and precise manner. It might benefit the evaluation of cure strategies based on immune clearance, as these will specifically target this minor fraction of the viral reservoir, and might assist in the identification of novel therapeutic candidates that modulate viral latency. IMPORTANCE Current efforts aimed at finding a definitive cure for HIV-1 infection are hampered mainly by the persistence of a viral reservoir in latently infected cells. While complete viral eradication from the body remains elusive, finding a functional cure to enable control of viremia without the need for continuous treatment is a key goal. As the lower reservoir size increases the likelihood of controlling viremia, new therapeutic strategies aim to reduce the size of this viral reservoir. Evaluating the efficacy of these strategies requires a robust assay to measure the viral reservoir. Currently available options are subject to overestimation or underestimation of the productive reservoir. In order to overcome this limitation, we have developed a novel assay, viral protein spot (VIP-SPOT), to precisely quantify the frequency of infected cells that retain the ability to reactivate and produce viral proteins.
Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells
We have previously shown that broadly neutralizing antibodies reactive to the conserved stem region of the influenza virus hemagglutinin (HA) were generated in people infected with the 2009 pandemic H1N1 strain. Such antibodies are rarely seen in humans following infection or vaccination with seasonal influenza virus strains. However, the important question remained whether the inactivated 2009 pandemic H1N1 vaccine, like the infection, could also induce these broadly neutralizing antibodies. To address this question, we analyzed B-cell responses in 24 healthy adults immunized with the pandemic vaccine in 2009. In all cases, we found a rapid, predominantly IgG-producing vaccine-specific plasmablast response. Strikingly, the majority (25 of 28) of HA-specific monoclonal antibodies generated from the vaccine-specific plasmablasts neutralized more than one influenza strain and exhibited high levels of somatic hypermutation, suggesting they were derived from recall of B-cell memory. Indeed, memory B cells that recognized the 2009 pandemic H1N1 HA were detectable before vaccination not only in this cohort but also in samples obtained before the emergence of the pandemic strain. Three antibodies demonstrated extremely broad cross-reactivity and were found to bind the HA stem. Furthermore, one stem-reactive antibody recognized not only H1 and H5, but also H3 influenza viruses. This exceptional cross-reactivity indicates that antibodies capable of neutralizing most influenza subtypes might indeed be elicited by vaccination. The challenge now is to improve upon this result and design influenza vaccines that can elicit these broadly cross-reactive antibodies at sufficiently high levels to provide heterosubtypic protection.
Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections
COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-ɣ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%-50% of the IFN-ɣ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-ɣ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.