Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
531 result(s) for "Immunoglobulin A, Secretory - analysis"
Sort by:
Comparison of Human Milk Immunoglobulin Survival during Gastric Digestion between Preterm and Term Infants
Human milk provides immunoglobulins (Igs) that supplement the passive immune system of neonates; however, the extent of survival of these Igs during gastric digestion and whether this differs between preterm and term infants remains unknown. Human milk, and infant gastric samples at 2 h post-ingestion were collected from 15 preterm (23–32 week gestational age (GA)) mother-infant pairs and from 8 term (38–40 week of GA) mother-infant pairs within 7–98 days postnatal age. Samples were analyzed via ELISA for concentration of total IgA (secretory IgA (SIgA)/IgA), total secretory component (SC/SIgA/SIgM), total IgM (SIgM/IgM), and IgG as well as peptidomics. Total IgA concentration decreased by 60% from human milk to the preterm infant stomach and decreased by 48% in the term infant stomach. Total IgM and IgG concentrations decreased by 33% and 77%, respectively, from human milk to the term infant stomach but were stable in the preterm infant stomach. Release of peptides from all Ig isotypes in the term infant stomach was higher than in the preterm stomach. Overall, the stability of human milk Igs during gastric digestion is higher in preterm infant than in term infants, which could be beneficial for assisting the preterm infants’ immature immune system.
Saliva as a useful tool for evaluating upper mucosal antibody response to influenza
Mucosal immunity plays a crucial role in controlling upper respiratory infections, including influenza. We established a quantitative ELISA to measure the amount of influenza virus-specific salivery IgA (sIgA) and salivary IgG (sIgG) antibodies using a standard antibody broadly reactive to the influenza A virus. We then analyzed saliva and serum samples from seven individuals infected with the A(H1N1)pdm09 influenza virus during the 2019–2020 flu seasons. We detected an early (6–10 days post-infection) increase of sIgA in five of the seven samples and a later (3–5 weeks) increase of sIgG in six of the seven saliva samples. Although the conventional parenteral influenza vaccine did not induce IgA production in saliva, vaccinated individuals with a history of influenza infection had higher basal levels of sIgA than those without a history. Interestingly, we observed sIgA and sIgG in an asymptomatic individual who had close contact with two influenza cases. Both early mucosal sIgA secretion and late systemically induced sIgG in the mucosal surface may protect against virus infection. Despite the small sample size, our results indicate that the saliva test system can be useful for analyzing upper mucosal immunity in influenza.
Fecal Secretory Immunoglobulin A and Lactate Level as a Biomarker of Mucosal Immune Dysfunction in Horses With Colic
Background Colic‐related obstructions can reduced intestinal mucosa function and cause dysbiosis in horses, but it is unclear how defense barrier and secretory immunoglobulin A (SIgA) secretion is disrupted. Objectives The aim of the study is to evaluate the effect of severity of colic signs and treatments on fecal SIgA and fecal lactate in horses. Animals Sixty‐two client owned hospitalised horses with colic and eight healthy horses. Methods Prospective clinical trial. Fecal samples were taken daily for 7 days. SIgA was analyzed using ELISA, and D/L‐lactate measured with a commercial kit. Results At Day 0, SIgA values in the colic medical and colic surgical groups were significantly higher than in the control stable group (U = 126.0, p = 0.099, Cliff's ∆ = 0.58 and U = 248.0, p = 0.005, Cliff's ∆ = 0.72, respectively). We found significant correlation between fecal SIgA and fecal lactate level in D0 (rs = 0.421, p = 0.038). Conclusions This study demonstrates the feasibility of using fecal samples to identify biomarkers of colic in horses. An increase in fecal SIgA in horses with colic might suggest the presence of inflammation within the intestines and disruption of the mucosal barrier. These data highlight changes in gastrointestinal barrier and immune function and the intestinal microbiota's metabolic activity in horses with colic.
Levels of innate immune factors in preterm and term mothers’ breast milk during the 1st month postpartum
There is a paucity of data on the effect of preterm birth on the immunological composition of breast milk throughout the different stages of lactation. We aimed to characterise the effects of preterm birth on the levels of immune factors in milk during the 1st month postpartum, to determine whether preterm milk is deficient in antimicrobial factors. Colostrum (days 2–5 postpartum), transitional milk (days 8–12) and mature milk (days 26–30) were collected from mothers of extremely preterm (<28 weeks of gestation, n 15), very preterm (28–<32 weeks of gestation, n 15), moderately preterm (32–<37 weeks of gestation, n 15) and term infants (37–41 weeks of gestation, n 15). Total protein, lactoferrin, secretory IgA, soluble CD14 receptor (sCD14), transforming growth factor-β2 (TGF-β2), α defensin 5 (HD5), β defensins 1 (HBD1) and 2, IL-6, IL-10, IL-13, interferon-γ, TNF-α and lysozyme (LZ) were quantified in milk. We examined the effects of lactation stage, gestational age, volume of milk expressed, mode of delivery, parity and maternal infection on milk immune factor concentrations using repeated-measures regression analysis. The concentrations of all factors except LZ and HD5 decreased over the 1st month postpartum. Extremely preterm mothers had significantly higher concentrations of HBD1 and TGF-β2 in colostrum than term mothers did. After controlling for other variables in regression analyses, preterm birth was associated with higher concentrations of HBD1, LZ and sCD14 in milk samples. In conclusion, preterm breast milk contains significantly higher concentrations of some immune proteins than term breast milk.
Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease
Interactions between the immune system and the intestinal microbiota may play a role in coeliac disease (CD). In the present study, the potential effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed CD were evaluated. A double-blind, randomised, placebo-controlled trial was conducted in thirty-three children who received a capsule containing either B. longum CECT 7347 (10 9 colony-forming units) or placebo (excipients) daily for 3 months together with a gluten-free diet (GFD). Outcome measures (baseline and post-intervention) included immune phenotype of peripheral blood cells, serum cytokine concentration, faecal secretory IgA (sIgA) content, anthropometric parameters and intestinal microbiota composition. Comparisons between the groups revealed greater height percentile increases ( P = 0·048) in the B. longum CECT 7347 group than in the placebo group, as well as decreased peripheral CD3 + T lymphocytes ( P = 0·004) and slightly reduced TNF-α concentration ( P = 0·067). Within-group comparisons of baseline and final values did not reveal any differences in T lymphocytes and cytokines in the placebo group, while decreased CD3 + ( P = 0·013) and human leucocyte antigen (HLA)-DR + T lymphocytes ( P = 0·029) and slightly reduced TNF-α concentration ( P = 0·085) were detected in the B. longum CECT 7347 group. Comparison between the groups showed that the administration of B. longum CECT 7347 reduced the numbers of the Bacteroides fragilis group ( P = 0·020) and the content of sIgA in stools ( P = 0·011) compared with the administration of placebo. Although this is a first exploratory intervention with limitations, the findings suggest that B. longum CECT 7347 could help improve the health status of CD patients who tend to show alterations in gut microbiota composition and a biased immune response even on a GFD.
Determination of soluble tumor necrosis factor receptor II and secretory immunoglobulin A in saliva of patients with dementia
The prevalence of pain and dementia increases with age, affecting a significant percentage of the population due to aging. Both pathologies are connected through the inflammatory process, specifically through the tumor necrosis factor. The effect of this cytokine is mediated through the modulation of its TNFRI and TNFRII receptors, which are linked to the dementia process. In addition, immunoglobulins such as secretory immunoglobulin A (sIgA) have been recognized as one of the main biomarkers of pain in saliva. sTNFRII and sIgA levels were determined in saliva samples by ELISA from healthy people and patients with dementia in GDS stages 5–7. The concentrations of these markers were also correlated with the GDS stage and sex. We observed a significant decrease (*** p  ≤ 0.001) in the levels of sTNFRII (pg/mL) and a significant increase (** p  ≤ 0.01) in the levels of sIgA (ng/mL) in the saliva of patients with dementia compared to the healthy control group. We did not observe a correlation with the data of the biomarkers regarding the GDS stage and sex. The results obtained for sTNFRII are consistent with those obtained by other authors on brain tissue, who conclude that unopposed neuronal TNFRI signaling, when TNFRII is selectively downregulated, leads to a more severe course of AD pathogenesis. Regarding sIgA, the elevated values of sIgA may reflect the immune status of these patients. Therefore, these biomarkers can provide us with relevant information through a non-invasive method such as saliva analysis. Graphical abstract
Ingestion of High β-Glucan Barley Flour Enhances the Intestinal Immune System of Diet-Induced Obese Mice by Prebiotic Effects
The prebiotic effect of high β-glucan barley (HGB) flour on the innate immune system of high-fat model mice was investigated. C57BL/6J male mice were fed a high-fat diet supplemented with HGB flour for 90 days. Secretory immunoglobulin A (sIgA) in the cecum and serum were analyzed by enzyme-linked immunosorbent assays (ELISA). Real-time PCR was used to determine mRNA expression levels of pro- and anti-inflammatory cytokines such as interleukin (IL)-10 and IL-6 in the ileum as well as the composition of the microbiota in the cecum. Concentrations of short-chain fatty acids (SCFAs) and organic acids were analyzed by GC/MS. Concentrations of sIgA in the cecum and serum were increased in the HGB group compared to the control. Gene expression levels of IL-10 and polymeric immunoglobulin receptor (pIgR) significantly increased in the HGB group. HGB intake increased the bacterial count of microbiota, such as Bifidobacterium and Lactobacillus. Concentrations of propionate and lactate in the cecum were increased in the HGB group, and a positive correlation was found between these organic acids and the IL-10 expression level. Our findings showed that HGB flour enhanced immune function such as IgA secretion and IL-10 expression, even when the immune system was deteriorated by a high-fat diet. Moreover, we found that HGB flour modulated the gut microbiota, which increased the concentration of SCFAs, thereby stimulating the immune system.
The Effect of Hyperbaric Storage on the Nutritional Value and Retention of Certain Bioactive Proteins in Human Milk
Human milk (HM) contains the essential macronutrients and bioactive compounds necessary for the normal growth and development of newborns. The milk collected by human milk banks is stored frozen and pasteurized, reducing its nutritional and biological value. The purpose of this study was to determine the effect of hyperbaric storage at subzero temperatures (HS-ST) on the macronutrients and bioactive proteins in HM. As control samples, HM was stored at the same temperatures under 0.1 MPa. A Miris HM analyzer was used to determine the macronutrients and the energy value. The lactoferrin (LF), lysozyme (LYZ) and α-lactalbumin (α-LAC) content was checked using high-performance liquid chromatography, and an ELISA test was used to quantify secretory immunoglobulin A (sIgA). The results showed that the macronutrient content did not change significantly after 90 days of storage at 60 MPa/−5 °C, 78 MPa/−7 °C, 111 MPa/−10 °C or 130 MPa/−12 °C. Retention higher than 90% of LYZ, α-LAC, LF and sIgA was observed in the HM stored at conditions of up to 111 MPa/−10 °C. However, at 130 MPa/−12 °C, there was a reduction in LYZ and LF, by 39 and 89%, respectively. The storage of HM at subzero temperatures at 0.1 MPa did not affect the content of carbohydrates or crude and true protein. For fat and the energy value, significant decreases were observed at −5 °C after 90 days of storage.
Bronchial Secretory Immunoglobulin A Deficiency Correlates With Airway Inflammation and Progression of Chronic Obstructive Pulmonary Disease
Although airway inflammation can persist for years after smoking cessation in patients with chronic obstructive pulmonary disease (COPD), the mechanisms of persistent inflammation are largely unknown. We investigated relationships between bronchial epithelial remodeling, polymeric immunoglobulin receptor (pIgR) expression, secretory IgA (SIgA), airway inflammation, and mural remodeling in COPD. Lung tissue specimens and bronchoalveolar lavage were obtained from lifetime nonsmokers and former smokers with or without COPD. Epithelial structural changes were quantified by morphometric analysis. Expression of pIgR was determined by immunostaining and real-time polymerase chain reaction. Immunohistochemistry was performed for IgA, CD4 and CD8 lymphocytes, and cytomegalovirus and Epstein-Barr virus antigens. Total IgA and SIgA were measured by ELISA and IgA transcytosis was studied using cultured human bronchial epithelial cells. Areas of bronchial mucosa covered by normal pseudostratified ciliated epithelium were characterized by pIgR expression with SIgA present on the mucosal surface. In contrast, areas of bronchial epithelial remodeling had reduced pIgR expression, localized SIgA deficiency, and increased CD4(+) and CD8(+) lymphocyte infiltration. In small airways (<2 mm), these changes were associated with presence of herpesvirus antigens, airway wall remodeling, and airflow limitation in patients with COPD. Patients with COPD had reduced SIgA in bronchoalveolar lavage. Air-liquid interface epithelial cell cultures revealed that complete epithelial differentiation was required for normal pIgR expression and IgA transcytosis. Our findings indicate that epithelial structural abnormalities lead to localized SIgA deficiency in COPD airways. Impaired mucosal immunity may contribute to persistent airway inflammation and progressive airway remodeling in COPD.
Supplemental dietary l-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens
The present study investigated the effects of dietary arginine (Arg) supplementation on intestinal structure and functionality in broiler chickens subjected to coccidial challenge. The present study was a randomised complete block design employing a 3 × 2 factorial arrangement (n 8) with three dietary concentrations of Arg (11·1, 13·3 and 20·2 g/kg) with or without coccidial vaccine challenge (unchallenged and coccidial challenge). On day 14, birds were orally administered with coccidial vaccine or saline. On day 21, birds were killed to obtain jejunal tissue and mucosal samples for histological, gene expression and mucosal immunity measurements. Within 7 d of the challenge, there was a decrease in body-weight gain and feed intake, and an increase in the feed:gain ratio (P< 0·05). Jejunal inflammation was evidenced by villus damage, crypt dilation and goblet cell depletion. Coccidial challenge increased mucosal secretory IgA concentration and inflammatory gene (iNOS, IL-1β, IL-8 and MyD88) mRNA expression levels (P< 0·05), as well as reduced jejunal Mucin-2, IgA and IL-1RI mRNA expression levels (P< 0·05). Increasing Arg concentration (1) increased jejunal villus height (P< 0·05) and linearly increased jejunal crypt depth (P< 0·05); (2) quadratically increased mucosal maltase activity (P< 0·05) and linearly decreased mucosal secretory IgG concentration (P< 0·05) within the coccidiosis-challenged groups; and (3) linearly decreased jejunal Toll-like receptor 4 (TLR4) mRNA expression level (P< 0·05) within the coccidiosis-challenged groups. The mRNA expression of mechanistic target of rapamycin (mTOR) complex 1 pathway genes (mTOR and RPS6KB1) and the anti-apoptosis gene Bcl-2 quadratically responded to increasing dietary Arg supplementation (P< 0·05). These results indicate that dietary Arg supplementation attenuates intestinal mucosal disruption in coccidiosis-challenged chickens probably through suppressing TLR4 and activating mTOR complex 1 pathways.