Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
398
result(s) for
"Immunoglobulin Fab Fragments - genetics"
Sort by:
Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange
by
Jan G. J. van de Winkel
,
Michael J. Gramer
,
Paul W. H. I. Parren
in
Animals
,
antibodies
,
Antibodies, Bispecific - biosynthesis
2013
The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.
Journal Article
Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface
2014
Molecular and structural characterization is reported for a new broad and potent monoclonal antibody against HIV that binds to an epitope bridging the gp41 and gp120 subunits — the antibody affects a step in virus entry after binding to CD4 and before engagement of CCR5.
Novel vaccine target on HIV-1
This paper describes a broadly neutralizing HIV-specific monoclonal antibody that binds with high potency to a novel HIV-1 envelope glycoprotein epitope. Molecular and structural characterization of the new antibody, named 35O22, show that it is specific for a new site of vulnerability made up of amino acids and glycans bridging the gp41 and gp120 subunits. The antibody affects a step in virus entry after binding to CD4 and before engagement of CCR5. Serologic analysis indicates that antibodies to this newly recognized site of vulnerability are commonly elicited by natural infection, raising the prospect that in may be a promising potential vaccine target.
The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref.
1
). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC
50
) <50 μg ml
−1
. The median IC
50
of neutralized viruses was 0.033 μg ml
−1
, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.
Journal Article
Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States
by
Nevinsky, Georgy A.
,
Buneva, Valentina N.
,
Ermakov, Evgeny A.
in
Adaptive Immunity
,
Antibodies, Bispecific - chemistry
,
Antibodies, Bispecific - genetics
2020
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Journal Article
Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding
by
Patapoff, Thomas W.
,
Lee, Chingwei V.
,
Walters, Benjamin T.
in
Antibodies - chemistry
,
Antibodies - genetics
,
Antibodies - immunology
2017
Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo.
Journal Article
Development and characterization of functional antibodies targeting NMDA receptors
2022
N
-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives.
Selective targeting individual subtypes of N-methyl-D-aspartate receptors (NMDARs) is a desirable therapeutic strategy for neurological disorders. Here, the authors report identification of a functional antibody that specifically targets and allosterically down-regulates ion channel activity of the GluN1—GluN2B NMDAR subtype.
Journal Article
Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins
2021
With conformation-specific nanobodies being used for a wide range of structural, biochemical, and cell biological applications, there is a demand for antigen-binding fragments (Fabs) that specifically and tightly bind these nanobodies without disturbing the nanobody–target protein interaction. Here, we describe the development of a synthetic Fab (termed NabFab) that binds the scaffold of an alpaca-derived nanobody with picomolar affinity. We demonstrate that upon complementary-determining region grafting onto this parent nanobody scaffold, nanobodies recognizing diverse target proteins and derived from llama or camel can cross-react with NabFab without loss of affinity. Using NabFab as a fiducial and size enhancer (50 kDa), we determined the high-resolution cryogenic electron microscopy (cryo-EM) structures of nanobody-bound VcNorM and ScaDMT, both small membrane proteins of ∼50 kDa. Using an additional anti-Fab nanobody further facilitated reliable initial three-dimensional structure determination from small cryo-EM test datasets. Given that NabFab is of synthetic origin, is humanized, and can be conveniently expressed in Escherichia coli in large amounts, it may be useful not only for structural biology but also for biomedical applications.
Journal Article
Disulfide-constrained Fabs overcome target size limitation for high-resolution single particle cryoEM
2025
High-resolution protein structures are essential for understanding biological mechanisms and drug discovery. While cryoEM has revolutionized structure determination of large protein complexes, most disease-related proteins are small (<50 kDa) and challenging to resolve due to low signal-to-noise ratios and alignment difficulties. Current scaffold protein strategies increase target size but suffer from inherent flexibility, resulting in poorly resolved targets compared to scaffolds. We present an iteratively engineered molecular design transforming antibody fragments (Fabs) into conformationally Rigid Fabs that enable high-resolution structure determination of small proteins (~20 kDa). This design introduces strategic disulfide bonds, creating well-folded, rigidly constrained Fabs applicable across various species, frameworks, and chimeric constructs. Rigid Fabs enabled high-resolution cryoEM structures (2.3-2.5 Å) of two small proteins: Ang2 (26 kDa) and KRAS (21 kDa). Our disulfide-constrained Rigid Fab strategy provides a general approach for overcoming target size limitation of single-particle cryoEM.
Small proteins (<50 kDa) are difficult to resolve by cryo-EM due to low signal-to-noise ratios and alignment challenges. Here, authors engineered conformationally rigid antibody fragments (Rigid Fabs) enabling high-resolution cryo-EM structures of small (~20 kDa) proteins like KRAS.
Journal Article
Controlled Fab-arm exchange for the generation of stable bispecific IgG1
by
de Jong, Rob N
,
Priem, Patrick
,
van den Bremer, Ewald T J
in
631/1647/338
,
631/1647/664/2228
,
631/61/24
2014
Labrijn
et al.
describe the generation of bispecific antibodies through controlled Fab-arm exchange, involving separate expression of two parental IgG1s containing single matching point mutations, followed by recombination of the 'half molecules'.
The generation of bispecific antibodies (bsAbs) with natural IgG architecture in a practical and efficient manner has been a longstanding challenge. Here we describe controlled Fab-arm exchange (cFAE), which is an easy-to-use method to generate bispecific IgG1 (bsIgG1). The protocol involves the following: (i) separate expression of two parental IgG1s containing single matching point mutations in the CH3 domain; (ii) mixing of parental IgG1s under permissive redox conditions
in vitro
to enable recombination of half-molecules; (iii) removal of the reductant to allow reoxidation of interchain disulfide bonds; and (iv) analysis of exchange efficiency and final product using chromatography-based or mass spectrometry (MS)–based methods. The protocol generates bsAbs with regular IgG architecture, characteristics and quality attributes both at bench scale (micrograms to milligrams) and at a mini-bioreactor scale (milligrams to grams) that is designed to model large-scale manufacturing (kilograms). Starting from good-quality purified proteins, exchange efficiencies of ≥95% can routinely be obtained within 2–3 d (including quality control).
Journal Article
An MPER antibody neutralizes HIV-1 using germline features shared among donors
2019
The membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 μg/ml (IC
50
). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens.
Here, the authors identify a broadly neutralizing antibody from an HIV-infected person that recognizes the membrane-proximal external region (MPER) of HIV envelope glycoprotein (Env) and has a short CDRH3 and low polyreactivity. Structural analysis shows how the antibody binds the MPER and Env on the viral membrane.
Journal Article
Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation
by
Nussenzweig, Michel C.
,
Artyomov, Maxim N.
,
Mouquet, Hugo
in
631/250/2152/2153/1291
,
631/250/249/1570/1901
,
631/326/596/2553
2010
Antibodies hedge their bets
Most antibodies are highly specific, binding with high affinity to a single foreign antigen. However, an analysis of human immunodeficiency virus (HIV) envelope glycoprotein-specific monoclonal antibodies from infected subjects provides evidence for a surprisingly high degree of polyreactivity. Of 134 different antibodies directed at the gp140 envelope glycoprotein cloned from six patients, 75% were polyreactive, binding with high affinity to one gp140 site and with lower affinity to other sites on the viral surface. Relatively few gp140 glycoprotein spikes are displayed on the surface of HIV, so homotypic bivalent antibody binding is disfavoured and 'heteroligation' may help to improve net antibody affinity in such instances.
During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. Here, the monoclonal antibodies produced in two infected subjects in response to human immunodeficiency virus (HIV) glycoprotein have been analysed. The results provide evidence for polyreactivity, which may be required when the density of glycoprotein spikes is so low that bivalent binding is unlikely.
During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding
1
,
2
,
3
. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development
4
, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients
5
with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.
Journal Article