Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
282
result(s) for
"Immunotherapeutics"
Sort by:
Adapting prescribing criteria for amyloid‐targeted antibodies for adults with Down syndrome
by
Rosas, Herminia Diana
,
Chicoine, Brian
,
Silverman, Wayne
in
Adult
,
Alzheimer Disease - drug therapy
,
Alzheimer's disease
2024
Prior authorization criteria for Federal Drug Administration (FDA) approved immunotherapeutics, among the class of anti‐amyloid monoclonal antibodies (mAbs), established by state drug formulary committees, are tailored for adults with late‐onset Alzheimer's disease. This overlooks adults with Down syndrome (DS), who often experience dementia at a younger age and with different diagnostic assessment outcomes. This exclusion may deny DS adults access to potential disease‐modifying treatments. To address this issue, an international expert panel convened to establish adaptations of prescribing criteria suitable for DS patients and parameters for access to Centers for Medicare & Medicaid Services (CMS) registries. The panel proposed mitigating disparities by modifying CMS and payer criteria to account for younger onset age, using alternative language and assessment instruments validated for cognitive decline in the DS population. The panel also recommended enhancing prescribing clinicians' diagnostic capabilities for DS and initiated awareness‐raising activities within healthcare organizations. These efforts facilitated discussions with federal officials, aimed at achieving equity in access to anti‐amyloid immunotherapeutics, with implications for national authorities worldwide evaluating these and other new disease‐modifying therapeutics for Alzheimer's disease.
Journal Article
Antibody Treatment against Angiopoietin-Like 4 Reduces Pulmonary Edema and Injury in Secondary Pneumococcal Pneumonia
by
School of Medicine [Shenzhen, China] ; Southern University of Science and Technology (SUSTech)
,
Quenot, Jean-Pierre
,
Singh Kohli, Gurjeet
in
Angiopoietin
,
Angiopoietin-like 4 Protein - antagonists & inhibitors
,
Angiopoietin-like 4 Protein - immunology
2019
Secondary bacterial lung infection by Streptococcus pneumoniae (S. pneumoniae) poses a serious health concern, especially in developing countries. We posit that the emergence of multiantibiotic-resistant strains will jeopardize current treatments in these regions. Deaths arising from secondary infections are more often associated with acute lung injury, a common consequence of hypercytokinemia, than with the infection per se Given that secondary bacterial pneumonia often has a poor prognosis, newer approaches to improve treatment outcomes are urgently needed to reduce the high levels of morbidity and mortality. Using a sequential dual-infection mouse model of secondary bacterial lung infection, we show that host-directed therapy via immunoneutralization of the angiopoietin-like 4 c-isoform (cANGPTL4) reduced pulmonary edema and damage in infected mice. RNA sequencing analysis revealed that anti-cANGPTL4 treatment improved immune and coagulation functions and reduced internal bleeding and edema. Importantly, anti-cANGPTL4 antibody, when used concurrently with either conventional antibiotics or antipneumolysin antibody, prolonged the median survival of mice compared to monotherapy. Anti-cANGPTL4 treatment enhanced immune cell phagocytosis of bacteria while restricting excessive inflammation. This modification of immune responses improved the disease outcomes of secondary pneumococcal pneumonia. Taken together, our study emphasizes that host-directed therapeutic strategies are viable adjuncts to standard antimicrobial treatments.IMPORTANCE Despite extensive global efforts, secondary bacterial pneumonia still represents a major cause of death in developing countries and is an important cause of long-term functional disability arising from lung tissue damage. Newer approaches to improving treatment outcomes are needed to reduce the significant morbidity and mortality caused by infectious diseases. Our study, using an experimental mouse model of secondary S. pneumoniae infection, shows that a multimodal treatment that concurrently targets host and pathogen factors improved lung tissue integrity and extended the median survival time of infected mice. The immunoneutralization of host protein cANGPTL4 reduced the severity of pulmonary edema and damage. We show that host-directed therapeutic strategies as well as neutralizing antibodies against pathogen virulence factors are viable adjuncts to standard antimicrobial treatments such as antibiotics. In view of their different modes of action compared to antibiotics, concurrent immunotherapies using antibodies are potentially efficacious against secondary pneumococcal pneumonia caused by antibiotic-resistant pathogens.
Journal Article
Corrigendum: The immunomodulatory impact of naturally derived neem leaf glycoprotein on the initiation progression model of 4NQO induced murine oral carcinogenesis: a preclinical study
2024
[This corrects the article DOI: 10.3389/fimmu.2024.1325161.].
Journal Article
Immunological Aspects of Approved MS Therapeutics
2019
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Journal Article
Near‐Infrared‐II Nanoparticles for Vascular Normalization Combined with Immune Checkpoint Blockade via Photodynamic Immunotherapy Inhibit Uveal Melanoma Growth and Metastasis
by
Shang, Kun
,
Zheng, Xiaoqin
,
Tan, Gang
in
abnormal vasculature
,
anti‐programmed death‐ligand 1
,
Blood vessels
2023
Photodynamic therapy (PDT) has been widely employed in tumor treatment due to its effectiveness. However, the tumor hypoxic microenvironment which is caused by abnormal vasculature severely limits the efficacy of PDT. Furthermore, the abnormal vasculature has been implicated in the failure of immunotherapy. In this study, a novel nanoparticle denoted as Combo‐NP is introduced, composed of a biodegradable NIR II fluorescent pseudo‐conjugate polymer featuring disulfide bonds within its main chain, designated as TPA‐BD, and the vascular inhibitor Lenvatinib. Combo‐NP exhibits dual functionality by not only inducing cytotoxic reactive oxygen species (ROS) to directly eliminate tumor cells but also eliciting immunogenic cell death (ICD). This ICD response, in turn, initiates a robust cascade of immune reactions, thereby augmenting the generation of cytotoxic T lymphocytes (CTLs). In addition, Combo‐NP addresses the issue of tumor hypoxia by normalizing the tumor vasculature. This normalization process enhances the efficacy of PDT while concurrently fostering increased CTLs infiltration within the tumor microenvironment. These synergistic effects synergize to potentiate the photodynamic‐immunotherapeutic properties of the nanoparticles. Furthermore, when combined with anti‐programmed death‐ligand 1 (PD‐L1), they showcase notable inhibitory effects on tumor metastasis. The findings in this study introduce an innovative nanomedicine strategy aimed at triggering systemic anti‐tumor immune responses for the treatment of Uveal melanoma. A nanoparticle (Combo‐NP) that contains biodegradable NIR‐II‐fluorescent pseudo conjugate polymer with disulfide bonds in the main chain (TPA‐BD) and a vascular inhibitor Lenvatinib (Len) is designed. Combo‐NP not only kill tumors by generating reactive oxygen species (ROS), but also trigger immunogenic cell death (ICD) initiating cascade immune responses leading to the production of cytotoxic T lymphocytes (CTLs). Moreover, Combo‐NP alleviate hypoxia by normalizing the tumor vessels, thereby improving the Photodynamic therapy (PDT)efficiency and increasing the infiltration of CTLs. These effects combine to amplify the photodynamic‐immunotherapy of the nanoparticles exhibiting promising inhibitory effects on tumor metastasis and inducing an abscopal immune response when combine with anti‐programmed death‐ligand 1 (PD‐L1) immunotherapy.
Journal Article
Treatment strategies for autoimmune encephalitis
by
Lee, Soon-Tae
,
Shin, Yong-Won
,
Lee, Sang Kun
in
Autoimmune diseases
,
Corticosteroids
,
Encephalitis
2018
Autoimmune encephalitis is one of the most rapidly growing research topics in neurology. Along with discoveries of novel antibodies associated with the disease, clinical experience and outcomes with diverse immunotherapeutic agents in the treatment of autoimmune encephalitis are accumulating. Retrospective observations indicate that early aggressive treatment is associated with better functional outcomes and fewer relapses. Immune response to first-line immunotherapeutic agents (corticosteroids, intravenous immunoglobulin, plasma exchange, and immunoadsorption) is fair, but approximately half or more of patients are administered second-line immunotherapy (rituximab and cyclophosphamide). A small but significant proportion of patients are refractory to all first- and second-line therapies and require further treatment. Although several investigations have shown promising alternatives, the low absolute number of patients involved necessitates more evidence to establish further treatment strategies. In this review, the agents used for first- and second-line immunotherapy are discussed and recent attempts at finding new treatment options are introduced.
Journal Article
Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators
2020
In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. However, some immunotherapy shows certain limitations including poor therapeutic targeting and unwanted side effects that hinder its use in clinics. Recently, several researchers are exploring an alternative methodology to overcome the above limitations. One of the emerging tracks in this field area is nano-immunotherapy which has gone through rapid progress and revealed considerable potentials to solve limitations related to immunotherapy. Targeted and stimuli-sensitive biocompatible nanoparticles (NPs) can be synthesized to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity and to enhance the survival rate of cancer patients. In this review, we have discussed cancer immunotherapy and the application of NPs in cancer immunotherapy, as a carrier of immunotherapeutic agents and as a direct immunomodulator.
Journal Article
Host-parasite interactions during Plasmodium infection: Implications for immunotherapies
2023
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host’s immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Journal Article
SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic
by
Rabaan, Ali A.
,
Dhama, Kuldeep
,
Malik, Yashpal Singh
in
Antibodies
,
Antiviral agents
,
Antiviral Agents - therapeutic use
2020
A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China, which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 210 countries while affecting more than 25 million people and causing more than 843,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus
Betacoronavirus
, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia, and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antiviral drugs, and vaccines, and to design rapid and confirmatory viral diagnostics as well as adopt appropriate prevention and control strategies. To date, August 30, 2020, no effective, proven therapeutic antibodies or specific drugs, and vaccines have turned up. In this review article, we describe the underlying molecular organization and phylogenetic analysis of the coronaviruses, including the SARS-CoV-2, and recent advances in diagnosis and vaccine development in brief and focusing mainly on developing potential therapeutic options that can be explored to manage this pandemic virus infection, which would help in valid countering of COVID-19.
Journal Article
The Role of Thymoquinone in Inflammatory Response in Chronic Diseases
2022
Anti-inflammatory therapies have been shown to be effective in the prevention of various cardiovascular diseases, tumors, and cancer complications. Thymoquinone (TQ), the main active constituent of Nigella sativa, has shown promising therapeutic properties in many in vivo and in vitro models. However, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone. Studies have explored the combination of TQ with biological nanomaterials to improve its bioavailability. The TQ nanoparticle formulation shows better bioavailability than free TQ, and these formulations are ready for clinical trials to determine their potential as therapeutic agents. In this paper, we review current knowledge about the interaction between TQ and the inflammatory response and summarize the research prospects in Korea and abroad. We discuss the different biological activities of TQ and various combination therapies of TQ and nanomaterials in clinical trials.
Journal Article