Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
28,894 result(s) for "Immunotherapy methods."
Sort by:
The lock and key of medicine : monoclonal antibodies and the transformation of healthcare
This book is the first to tell the extraordinary yet unheralded history of monoclonal antibodies. Often referred to as Mabs, they are unfamiliar to most nonscientists, yet these microscopic protein molecules are everywhere, quietly shaping our lives and healthcare. Discovered in the mid-1970s in the laboratory where Watson and Crick had earlier unveiled the structure of DNA, Mabs have radically changed understandings of the pathways of disease. They have enabled faster, cheaper, and more accurate clinical diagnostic testing on a vast scale. And they have played a fundamental role in pharmaceutical innovation, leading to such developments as recombinant interferon and insulin, and personalized drug therapies such as Herceptin. Today Mabs constitute six of the world's top ten blockbuster drugs and make up a third of new introduced treatments. -- From dust jacket.
Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers
PD-1 plus CTLA-4 blockade is highly effective in advanced-stage, mismatch repair (MMR)-deficient (dMMR) colorectal cancers, yet not in MMR-proficient (pMMR) tumors. We postulated a higher efficacy of neoadjuvant immunotherapy in early-stage colon cancers. In the exploratory NICHE study (ClinicalTrials.gov: NCT03026140 ), patients with dMMR or pMMR tumors received a single dose of ipilimumab and two doses of nivolumab before surgery, the pMMR group with or without celecoxib. The primary objective was safety and feasibility; 40 patients with 21 dMMR and 20 pMMR tumors were treated, and 3 patients received nivolumab monotherapy in the safety run-in. Treatment was well tolerated and all patients underwent radical resections without delays, meeting the primary endpoint. Of the patients who received ipilimumab + nivolumab (20 dMMR and 15 pMMR tumors), 35 were evaluable for efficacy and translational endpoints. Pathological response was observed in 20/20 (100%; 95% exact confidence interval (CI): 86–100%) dMMR tumors, with 19 major pathological responses (MPRs, ≤10% residual viable tumor) and 12 pathological complete responses. In pMMR tumors, 4/15 (27%; 95% exact CI: 8–55%) showed pathological responses, with 3 MPRs and 1 partial response. CD8 + PD-1 + T cell infiltration was predictive of response in pMMR tumors. These data indicate that neoadjuvant immunotherapy may have the potential to become the standard of care for a defined group of colon cancer patients when validated in larger studies with at least 3 years of disease-free survival data. Results from the NICHE study show remarkable pathological responses to neoadjuvant combination immunotherapy in patients with early-stage colon cancer and uncover potential biomarkers of response.
Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 1 trial
Neurofibrillary pathology composed of tau protein is a main correlate of cognitive impairment in patients with Alzheimer's disease. Immunotherapy targeting pathological tau proteins is therefore a promising strategy for disease-modifying treatment of Alzheimer's disease. We have developed an active vaccine, AADvac1, against pathological tau proteins and assessed it in a phase 1 trial. We did a first-in-man, phase 1, 12 week, randomised, double-blind, placebo-controlled study of AADvac1 with a 12 week open-label extension in patients aged 50–85 years with mild-to-moderate Alzheimer's disease at four centres in Austria. We randomly assigned patients with a computer-generated sequence in a 4:1 ratio overall to receive AADvac1 or placebo. They received three subcutaneous doses of AADvac1 or placebo from masked vaccine kits at monthly intervals, and then entered the open-label phase, in which all patients were allocated to AADvac1 treatment and received another three doses at monthly intervals. Patients, carers, and all involved with the trial were masked to treatment allocation. The primary endpoint was all-cause treatment-emergent adverse events, with separate analyses for injection site reactions and other adverse events. We include all patients who received at least one dose of AADvac1 in the safety assessment. Patients who had a positive IgG titre against the tau peptide component of AADvac1 at least once during the study were classified as responders. The first-in-man study is registered with EU Clinical Trials Register, number EudraCT 2012-003916-29, and ClinicalTrials.gov, number NCT01850238; the follow-up study, which is ongoing, is registered with EU Clinical Trials Register, number EudraCT 2013-004499-36, and ClinicalTrials.gov, number NCT02031198. This study was done between June 9, 2013, and March 26, 2015. 30 patients were randomly assigned in the double-blind phase: 24 patients to the AADvac1 group and six to the placebo group. A total of 30 patients received AADvac1. Two patients withdrew because of serious adverse events. The most common adverse events were injection site reactions after administration (reported in 16 [53%] vaccinated patients [92 individual events]). No cases of meningoencephalitis or vasogenic oedema occurred after administration. One patient with pre-existing microhaemorrhages had newly occurring microhaemorrhages. Of 30 patients given AADvac1, 29 developed an IgG immune response. A geometric mean IgG antibody titre of 1:31415 was achieved. Baseline values of CD3+ CD4+ lymphocytes correlated with achieved antibody titres. AADvac1 had a favourable safety profile and excellent immunogenicity in this first-in-man study. Further trials are needed to corroborate the safety assessment and to establish proof of clinical efficacy of AADvac1. AXON Neuroscience SE.
Natural killer cells in antitumour adoptive cell immunotherapy
Natural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia. In recent years, following the paradigm-shifting successes of chimeric antigen receptor (CAR)-engineered adoptive T cell therapy and the advancement in technologies that can turn cells into powerful antitumour weapons, the interest in NK cells as a candidate for immunotherapy has grown exponentially. Strategies for the development of NK cell-based therapies focus on enhancing NK cell potency and persistence through co-stimulatory signalling, checkpoint inhibition and cytokine armouring, and aim to redirect NK cell specificity to the tumour through expression of CAR or the use of engager molecules. In the clinic, the first generation of NK cell therapies have delivered promising results, showing encouraging efficacy and remarkable safety, thus driving great enthusiasm for continued innovation. In this Review, we describe the various approaches to augment NK cell cytotoxicity and longevity, evaluate challenges and opportunities, and reflect on how lessons learned from the clinic will guide the design of next-generation NK cell products that will address the unique complexities of each cancer.This review gives an overview of natural killer (NK) cell-based immunotherapies. The authors describe the various engineering strategies used to increase NK cell cytotoxicity and persistence, as well as the current challenges and opportunities for the future design of next-generation NK cell therapies.
Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy ( n  = 30) and in combination with atezolizumab ( n  = 183) in pretreated patients with advanced solid tumors. The primary objective was safety and tolerability; exploratory objectives included evaluation of pharmacokinetics, pharmacodynamics, preliminary antitumor activity and immunogenicity. Non-prespecified interim analysis showed that autogene cevumeran was well tolerated and elicited poly-epitopic neoantigen-specific responses, encompassing CD4 + and/or CD8 + T cells, in 71% of patients, most of them undetectable at baseline. Responses were detectable up to 23 months after treatment initiation. CD8 + T cells specific for several neoantigens constituted a median of 7.3% of circulating CD8 + T cells, reaching up to 23% in some patients. Autogene cevumeran-induced T cells were found within tumor lesions constituting up to 7.2% of tumor-infiltrating T cells. Clinical activity was observed, including one objective response in monotherapy dose escalation and in two patients with disease characteristics unfavorable for response to immunotherapy treated in combination with atezolizumab. These findings support the continued development of autogene cevumeran in earlier treatment lines. ClinicalTrials.gov registration: NCT03289962 . In this phase 1 trial, patients with locally advanced or metastatic solid tumors were treated with the individualized mRNA neoantigen-specific immunotherapy (iNeST) autogene cevumeran alone or in combination with the anti-PD-L1 agent atezolizumab, showing long-lasting neoantigen-specific immune responses and preliminary clinical activity, supporting further development of this therapeutic approach.
Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson's disease: a randomised, single-blinded, phase 1 trial
Robust evidence supports the role of α-synuclein pathology as a driver of neuronal dysfunction in Parkinson's disease. PD01A is a specific active immunotherapy with a short peptide formulation targeted against oligomeric α-synuclein. This phase 1 study assessed the safety and tolerability of the PD01A immunotherapeutic in patients with Parkinson's disease. We did a first-in-human, randomised, phase 1 study of immunisations with PD01A, followed by three consecutive study extensions. Patients aged 45–65 years with a clinical diagnosis of Parkinson's disease (≤4 years since diagnosis and Hoehn and Yahr Stage 1 to 2), imaging results (dopamine transporter single photon emission CT and MRI) consistent with their Parkinson's disease diagnosis, and on stable doses of Parkinson's disease medications for at least 3 months were recruited at a single private clinic in Vienna, Austria. Patients were randomly assigned (1:1), using a computer-generated sequence with varying block size, to receive four subcutaneous immunisations with either 15 μg or 75 μg PD01A injected into the upper arms and followed up initially for 52 weeks, followed by a further 39 weeks' follow-up. Patients were then randomly assigned (1:1) again to receive the first booster immunisation at 15 μg or 75 μg and were followed up for 24 weeks. All patients received a second booster immunisation of 75 μg and were followed up for an additional 52 weeks. Patients were masked to dose allocation. Primary (safety) analyses included all treated patients. These four studies were registered with EU Clinical Trials Register, EudraCT numbers 2011–002650–31, 2013–001774–20, 2014–002489–54, and 2015–004854–16. 32 patients were recruited between Feb 14, 2012, and Feb 6, 2013, and 24 were deemed eligible and randomly assigned to receive four PD01A priming immunisations. One patient had a diagnosis change to multiple system atrophy and was withdrawn and two patients withdrew consent during the studies. 21 (87%) of 24 patients received all six immunisations and completed 221–259 weeks in-study (two patients in the 15 μg dose group and one patient in the 75 μg dose group discontinued). All patients experienced at least one adverse event, but most of them were considered unrelated to study treatment (except for transient local injection site reactions, which affected all but one patient). Serial MRI assessments also ruled out inflammatory processes. Systemic treatment-related adverse events were fatigue (n=4), headache (n=3), myalgia (n=3), muscle rigidity (n=2), and tremor (n=2). The geometric group mean titre of antibodies against the immunising peptide PD01 increased from 1:46 at baseline to 1:3580 at week 12 in the 15 μg dose group, and from 1:76 to 1:2462 at week 12 in the 75 μg dose group. Antibody titres returned to baseline over 2 years, but could be rapidly reactivated after booster immunisation from week 116 onwards, reaching geometric group mean titres up to 1:20218. Repeated administrations of PD01A were safe and well tolerated over an extended period. Specific active immunotherapy resulted in a substantial humoral immune response with target engagement. Phase 2 studies are needed to further assess the safety and efficacy of PD01A for the treatment of Parkinson's disease. AFFiRiS, Michael J Fox Foundation.
Sequential immunotherapy and targeted therapy for metastatic BRAF V600 mutated melanoma: 4-year survival and biomarkers evaluation from the phase II SECOMBIT trial
No prospective data were available prior to 2021 to inform selection between combination BRAF and MEK inhibition versus dual blockade of programmed cell death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as first-line treatment options for BRAFV 600-mutant melanoma. SECOMBIT (NCT02631447) was a randomized, three-arm, noncomparative phase II trial in which patients were randomized to one of two sequences with immunotherapy or targeted therapy first, with a third arm in which an 8-week induction course of targeted therapy followed by a planned switch to immunotherapy was the first treatment. BRAF/MEK inhibitors were encorafenib plus binimetinib and checkpoint inhibitors ipilimumab plus nivolumab. Primary outcome of overall survival was previously reported, demonstrating improved survival with immunotherapy administered until progression and followed by BRAF/MEK inhibition. Here we report 4-year survival outcomes, confirming long-term benefit with first-line immunotherapy. We also describe preliminary results of predefined biomarkers analyses that identify a trend toward improved 4-year overall survival and total progression-free survival in patients with loss-of-function mutations affecting JAK or low baseline levels of serum interferon gamma (IFNy). These long-term survival outcomes confirm immunotherapy as the preferred first-line treatment approach for most patients with BRAF V600-mutant metastatic melanoma, and the biomarker analyses are hypothesis-generating for future investigations of predictors of durable benefit with dual checkpoint blockade and targeted therapy. SECOMBIT was a clinical trial testing different sequences of immunotherapy (ipilimumab plus nivolumab) and targeted therapy (encorafenib plus binimetinib) for untreated BRAF-mutated metastatic melanoma. Here the authors report 4-year survival outcomes, confirming long-term benefit with first-line immunotherapy, and preliminary biomarkers evaluation.
Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial
Small studies suggest peanut oral immunotherapy (OIT) might be effective in the treatment of peanut allergy. We aimed to establish the efficacy of OIT for the desensitisation of children with allergy to peanuts. We did a randomised controlled crossover trial to compare the efficacy of active OIT (using characterised peanut flour; protein doses of 2–800 mg/day) with control (peanut avoidance, the present standard of care) at the NIHR/Wellcome Trust Cambridge Clinical Research Facility (Cambridge, UK). Randomisation (1:1) was by use of an audited online system; group allocation was not masked. Eligible participants were aged 7–16 years with an immediate hypersensitivity reaction after peanut ingestion, positive skin prick test to peanuts, and positive by double-blind placebo-controlled food challenge (DBPCFC). We excluded participants if they had a major chronic illness, if the care provider or a present household member had suspected or diagnosed allergy to peanuts, or if there was an unwillingness or inability to comply with study procedures. Our primary outcome was desensitisation, defined as negative peanut challenge (1400 mg protein in DBPCFC) at 6 months (first phase). Control participants underwent OIT during the second phase, with subsequent DBPCFC. Immunological parameters and disease-specific quality-of-life scores were measured. Analysis was by intention to treat. Fisher's exact test was used to compare the proportion of those with desensitisation to peanut after 6 months between the active and control group at the end of the first phase. This trial is registered with Current Controlled Trials, number ISRCTN62416244. The primary outcome, desensitisation, was recorded for 62% (24 of 39 participants; 95% CI 45–78) in the active group and none of the control group after the first phase (0 of 46; 95% CI 0–9; p<0·001). 84% (95% CI 70–93) of the active group tolerated daily ingestion of 800 mg protein (equivalent to roughly five peanuts). Median increase in peanut threshold after OIT was 1345 mg (range 45–1400; p<0·001) or 25·5 times (range 1·82–280; p<0·001). After the second phase, 54% (95% CI 35–72) tolerated 1400 mg challenge (equivalent to roughly ten peanuts) and 91% (79–98) tolerated daily ingestion of 800 mg protein. Quality-of-life scores improved (decreased) after OIT (median change −1·61; p<0·001). Side-effects were mild in most participants. Gastrointestinal symptoms were, collectively, most common (31 participants with nausea, 31 with vomiting, and one with diarrhoea), then oral pruritus after 6·3% of doses (76 participants) and wheeze after 0·41% of doses (21 participants). Intramuscular adrenaline was used after 0·01% of doses (one participant). OIT successfully induced desensitisation in most children within the study population with peanut allergy of any severity, with a clinically meaningful increase in peanut threshold. Quality of life improved after intervention and there was a good safety profile. Immunological changes corresponded with clinical desensitisation. Further studies in wider populations are recommended; peanut OIT should not be done in non-specialist settings, but it is effective and well tolerated in the studied age group. MRC-NIHR partnership.
Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies
BackgroundLymphocyte-activation gene 3 (LAG-3) is an inhibitory immunoreceptor that negatively regulates T-cell activation. This paper presents preclinical characterization of the LAG-3 inhibitor, ieramilimab (LAG525), and phase I data for the treatment of patients with advanced/metastatic solid tumors with ieramilimab ±the anti-programmed cell death-1 antibody, spartalizumab.MethodsEligible patients had advanced/metastatic solid tumors and progressed after, or were unsuitable for, standard-of-care therapy, including checkpoint inhibitors in some cases. Patients received ieramilimab ±spartalizumab across various dose-escalation schedules. The primary objective was to assess the maximum tolerated dose (MTD) or recommended phase II dose (RP2D).ResultsIn total, 255 patients were allocated to single-agent ieramilimab (n=134) and combination (n=121) treatment arms. The majority (98%) had received prior antineoplastic therapy (median, 3). Four patients experienced dose-limiting toxicities in each treatment arm across various dosing cohorts. No MTD was reached. The RP2D on a 3-week schedule was declared as 400 mg ieramilimab plus 300 mg spartalizumab and, on a 4-week schedule (once every 4 weeks; Q4W), as 800 mg ieramilimab plus 400 mg spartalizumab; tumor target (LAG-3) suppression with 600 mg ieramilimab Q4W was predicted to be similar to the Q4W, RP2D schedule. Treatment-related adverse events (TRAEs) occurred in 75 (56%) and 84 (69%) patients in the single-agent and combination arms, respectively. Most common TRAEs were fatigue, gastrointestinal, and skin disorders, and were of mild severity; seven patients experienced at least one treatment-related serious adverse event in the single-agent (5%) and combination group (5.8%). Antitumor activity was observed in the combination arm, with 3 (2%) complete responses and 10 (8%) partial responses in a mixed population of tumor types. In the combination arm, eight patients (6.6%) experienced stable disease for 6 months or longer versus six patients (4.5%) in the single-agent arm. Responding patients trended towards having higher levels of immune gene expression, including CD8 and LAG3, in tumor tissue at baseline.ConclusionsIeramilimab was well tolerated as monotherapy and in combination with spartalizumab. The toxicity profile of ieramilimab in combination with spartalizumab was comparable to that of spartalizumab alone. Modest antitumor activity was seen with combination treatment.Trial registration numberNCT02460224.
Prognostic value of end-of-induction PET response after first-line immunochemotherapy for follicular lymphoma (GALLIUM): secondary analysis of a randomised, phase 3 trial
Initial results from the ongoing GALLIUM trial have shown that patients with follicular lymphoma have a longer progression-free survival after first-line immunochemotherapy with obinutuzumab than with rituximab. The aim of this secondary analysis was to evaluate the prognostic value of PET–CT responses after first-line immunochemotherapy in the GALLIUM study. GALLIUM is an open-label, parallel-group randomised, phase 3 trial, which recruited previously untreated patients with CD20-positive follicular lymphoma (grades 1–3a; disease stage III/IV, or stage II with largest tumour diameter ≥7 cm) who were aged 18 years or older and met the criteria for needing treatment. Eligible patients were randomly assigned in a 1:1 ratio to receive intravenous administration of obinutuzumab (1000 mg on days 1, 8, and 15 of cycle 1, then day 1 of subsequent cycles) or rituximab (375 mg/m2 on day 1 of each cycle), in six 21-day cycles with cyclophosphamide, doxorubicin, vincristine, and prednisone (known as CHOP; oral administration) followed by two 21-day cycles of antibody alone, or eight 21-day cycles cyclophosphamide, vincristine, and prednisone (known as CVP; oral administration), or six 28-day cycles with bendamustine, followed by maintenance antibody every 2 months for up to 2 years. The primary endpoint of the trial, investigator-assessed progression-free survival, has been reported previously. This secondary analysis reports PET and CT-based responses at end-of-induction therapy and explains their relation with progression-free and overall survival outcomes in patients with available scans. As per protocol, during the trial, PET scans (mandatory in the first 170 patients enrolled at sites with available PET facilities, and optional thereafter), acquired at baseline and end of induction (PET population), were assessed prospectively by investigators and an independent review committee (IRC) applying International Harmonisation Project (IHP) 2007 response criteria, and retrospectively by the IRC only applying current Lugano 2014 response criteria. IRC members (but not study investigators) were masked to treatment and clinical outcome when assessing response. The landmark analyses excluded patients who died or progressed (contrast enhanced CT-based assessment of progressive disease, or started next anti-lymphoma treatment) before or at end of induction. GALLIUM is registered at ClinicalTrials.gov, number NCT01332968. 1202 patients were enrolled in GALLIUM between July 6, 2011, and Feb 4, 2014, of whom 595 were included in the PET population; 533 (IHP 2007; prospective analysis), and 508 (Lugano 2014; retrospective analysis) were analysed for progression-free survival (landmark analysis). At end of induction, 390 of 595 patients (65·5% [95% CI 61·6–69·4]) achieved PET complete response according to IHP 2007 criteria, and 450 (75·6% [95% CI 72·0–79·0]) obtained PET complete metabolic response according to Lugano 2014 criteria. With a median of 43·3 months of observation (IQR 36·2–51·8), 2·5-year progression-free survival from end of induction was 87·8% (95% CI 83·9–90·8) in PET complete responders and 72·0% (63·1–79·0) in non-complete responders according to IRC-assessed IHP 2007 criteria (hazard ratio [HR] 0·4, 95% CI 0·3–0·6, p<0·0001). According to Lugano 2014 criteria, 2·5-year progression-free survival in complete metabolic responders was 87·4% (95% CI 83·7–90·2) and in non-complete metabolic responders was 54·9% (40·5–67·3; HR 0·2, 95% CI 0·1–0·3, p<0·0001). Our results suggest that PET is a better imaging modality than contrast-enhanced CT for response assessment after first-line immunochemotherapy in patients with follicular lymphoma. PET assessment according to Lugano 2014 response criteria provides a platform for investigation of response-adapted therapeutic approaches. Additional supportive data are welcomed. F Hoffmann-La Roche.