Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,234 result(s) for "Impact craters."
Sort by:
Target Earth : meteorites, asteroids, comets, and other cosmic intruders that may threaten our planet
\"An asteroid impact led to the extinction of the dinosaurs. Will another cosmic missile soon be heading our way? Govert Schilling offers a guide to the projectiles that have targeted our planet\"-- Provided by publisher.
Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon
Zircon (ZrSiO 4 ) is used to study impact structures because it responds to shock loading and unloading in unique, crystallographically controlled manners. One such phenomenon is the transformation of zircon to the high-pressure polymorph, reidite. This study quantifies the geometric and crystallographic orientation relationships between these two phases using naturally shocked zircon grains. Reidite has been characterized in 32 shocked zircon grains (shocked to stages II and III) using a combination of electron backscatter diffraction (EBSD) and focused ion beam cross-sectional imaging techniques. The zircon-bearing clasts were obtained from within suevite breccia from the Nördlingen 1973 borehole, close to the center of the 14.4 Ma Ries impact crater, in Bavaria, Germany. We have determined that multiple sets (up to 4) of reidite lamellae can form in a variety of non-rational habit planes within the parent zircon. However, EBSD mapping demonstrates that all occurrences of lamellar reidite have a consistent interphase misorientation relationship with the host zircon that is characterized by an approximate alignment of a {100} zircon with a {112} reidite and alignment of a {112} zircon with a conjugate {112} reidite . Given the tetragonal symmetry of zircon and reidite, we predict that there are eight possible variants of this interphase relationship for reidite transformation within a single zircon grain. Furthermore, laser Raman mapping of one reidite-bearing grain shows that moderate metamictization can inhibit reidite formation, thereby highlighting that the transformation is controlled by zircon crystallinity. In addition to lamellar reidite, submicrometer-scale granules of reidite were observed in one zircon. The majority of reidite granules have a topotaxial alignment that is similar to the lamellar reidite, with some additional orientation dispersion. We confirm that lamellar reidite likely forms via a deviatoric transformation mechanism in highly crystalline zircon, whereas granular reidite forms via a reconstructive transformation from low-crystallinity ZrSiO 4 within the reidite stability field. The results of this study further refine the formation mechanisms and conditions of reidite transformation in naturally shocked zircon.
Fire in the sky : cosmic collisions, killer astroids, and the race to defend Earth
A \"historical survey about asteroid hits sustained by Earth and the defenses being prepared against future asteroid-caused catastrophe\"-- Provided by publisher.
Impact crater recognition methods: A review
Impact craters are formed due to the high-speed collisions between small to medium-sized celestial bodies. Impact is the most significant driving force in the evolution of celestial bodies, and the impact craters provide crucial insights into the formation, evolution, and impact history of celestial bodies. In this paper, we present a detailed review of the characteristics of impact craters, impact crater remote sensing data, recognition algorithms, and applications related to impact craters. We first provide a detailed description of the geometric texture, illumination, and morphology characteristics observed in remote sensing data of craters. Then we summarize the remote sensing data and cataloging databases for the four terrestrial planets (i.e., the Moon, Mars, Mercury, and Venus), as well as the impact craters on Ceres. Subsequently, we study the advancement achieved in the traditional methods, machine learning methods, and deep learning methods applied to the classification, segmentation, and recognition of impact craters. Furthermore, based on the analysis results, we discuss the existing challenges in impact crater recognition and suggest some solutions. Finally, we explore the implementation of impact crater detection algorithms and provide a forward-looking perspective.
Newly detected shock-induced high-pressure phases formed in amphibolite clasts of the suevite breccia (Ries impact crater, Germany): Liebermannite, kokchetavite, and other ultrahigh-pressure phases
Amphibolite clasts in the suevite of the Ries impact crater contain shock-induced melt veins (SMVs) with high-pressure phases such as majoritic garnet, jadeitic clinopyroxene and others. In addition, heat conduction from hot SMVs into adjacent rock portions locally produced further high P–T melt pools. These melts were preferentially generated in rock domains, where the SMVs cross older (‘pre-Ries’) veinlets with analcime or prehnite and larger grains of sericitized plagioclase. Melting of such chemically different local bulk systems (Na-, Ca-, Ca-Na- and K-Na-rich) was facilitated by low solidus temperatures of the original secondary OH-bearing phases. From the resulting shock-induced melts, liebermannite, kokchetavite, jadeite, nonstoichiometric and albitic jadeite, grossular, vuagnatite, lawsonite + coesite, and clinozoisite crystallized during pressure release. Vuagnatite is now proven to be a genuine high-pressure phase. Its ubiquitous distance of 20–35 μm from the hot shock veins suggests a temperature sensitivity typical for an OH-bearing phase. In local Na-rich melts albitic jadeite appears instead of the assemblage jadeite + SiO2. Liebermannite, a dense polymorph of K-feldspar was identified by Raman spectroscopy. After stishovite, liebermannite constitutes the second known high-pressure phase in the Ries that contains silicon exclusively in six-fold coordination. The KAlSi3O8-polymorph kokchetavite was formed in alkali-rich melt glasses. Pressure and temperature values in the range of about 8–11 GPa and ~ 800–1100 °C were estimated from the chemical compositions of locally occurring majoritic garnets (Si = 3.21–3.32 and 3.06–3.10 apfu), respectively, and the presence of fine-grained aggregates of lawsonite and coesite. Generally, the neighboring areas of the veins are characterized by a sequence of variable high-pressure phases documenting strongly falling P–T conditions with increasing distance from the vein. These novel features enlighten the dynamic event during passage of a shock wave.
Impact crater degradation, Oxia Planum, Mars
The main goal of the European Space Agency (ESA) and Roscosmos ExoMars rover mission is to collect samples from the near-subsurface of Mars. The rover will look for any physical or chemical evidence of ancient life in the near subsurface. This map shows the distribution of impact craters at this proposed landing site in Oxia Planum on Mars. The map records 1199 impact craters > 500 m in diameter in a 5.0° × 2.5° region around Oxia Planum. The impact craters are symbolised based on the way different aspects of their morphology have degraded since their formation. The distribution of degradation and burial morphologies of impact craters can be used to determine where burial and erosion processes have occurred. Because the formation of impact craters is well constrained, occurs instantly and with a predictable flux, future studies could use this knowledge and our dataset to constrain when these events occurred.
Detection of Small Impact Craters via Semantic Segmenting Lunar Point Clouds Using Deep Learning Network
Impact craters refer to the most salient features on the moon surface. They are of huge significance for analyzing the moon topography, selecting the lunar landing site and other lunar exploration missions, etc. However, existing methods of impact crater detection have been largely implemented on the optical image data, thereby causing them to be sensitive to the sunlight. Thus, these methods can easily achieve unsatisfactory detection results. In this study, an original two-stage small crater detection method is proposed, which is sufficiently effective in addressing the sunlight effects. At the first stage of the proposed method, a semantic segmentation is conducted to detect small impact craters by fully exploiting the elevation information in the digital elevation map (DEM) data. Subsequently, at the second stage, the detection accuracy is improved under the special post-processing. As opposed to other methods based on DEM images, the proposed method, respectively, increases the new crusher percentage, recall and crusher level F1 by 4.89%, 5.42% and 0.67%.
What Is a Polygonal Impact Crater? A Proposed Framework Toward Quantifying Crater Shapes
Impact craters are used for a wide array of investigations of planetary surfaces. A crater form that is somewhat rare, forming only ∼10% of impact craters, is the polygonal impact crater (or PIC). These craters have been visually, manually identified as having at least two rim segments that are best represented as straight lines. Such straight lines or edges are most often used to infer details about the subsurface crust where faults control the structure of the crater cavity as it formed. The PIC literature is scant, but almost exclusively these craters are identified manually, and the potentially straight edges are classified and measured manually. The reliance on human subjectivity in both the identification and measurement motivated us to design a more objective algorithm to fit the crater rim shape, measure any straight edges, and measure joint angles between straight edges. The developed code uses a Monte Carlo approach from a user‐input number of edges to first find a reasonable shape from purely random possible shapes; it then uses an iterative Monte Carlo approach to improve the shape until a minimum difference between the shape and rim trace is found. It returns the result in a concise, parameterized form. This code is presented as a first step because, while we experimented with several different metrics, we could not find one that could consistently, objectively return an answer that stated which shape for a given crater was the best; this objective metric is an area for future improvement. Plain Language Summary Features on planetary bodies are often parameterized in databases, meaning that they are concisely represented in some way. This conciseness requires finding some method to summarize the information about the features. For impact craters, this is most often done by reducing a crater to three simple numbers: The latitude of the center, longitude of the center, and diameter of the crater. However, information about the shape of the crater's rim is lost when one assumes it is a simple circle. Some research applications investigate crater rims as polygons with two or more straight sides. Measurement of those sides is often subjective and almost always done manually. In this work, we have written an objective computer algorithm to try to determine how many sides represent the crater rim. This code can include straight and curved sides, and it can return the answer in a compact way for input into a database. This code is presented as a first step toward making these measurements objectively because it presently has no method to objectively state if one shape is better than another, instead still relying on the human analyst. Key Points An objective algorithm to fit polygons to impact craters, with and without curved sides, is presented The code concludes that Fejokoo crater (Ceres) is best represented by a straight‐sided hexagon, matching previous manual work Absence of strong differences between Monte Carlo fits to the same crater is interpreted as a lack of strong structural control
Curie temperature of weakly shocked target basalts at the Lonar impact crater, India
The study investigates Curie temperature (TC), bulk magnetic susceptibility, hysteresis, and X-ray diffraction pattern of in situ target basalts of Lonar impact crater, India. The main magnetic phase in the target basalt is low-Ti titanomagnetite. This study reveals an increase in TC and decrease in magnetic susceptibility and in full width at half maxima of the 311 peaks of titanomagnetite with distance from the crater center. Changes in crystal lattice of titanomagnetite, such as straining of 311 peaks, decrease in apparent crystallite size, and grain fragmentation may be among the possible reasons for the observed trends in TC and magnetic susceptibility. However, they both do not show any correlation between each other, indicating that different shock-induced processes affect them.