Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23,360
result(s) for
"Impacts of Global Change"
Sort by:
Summarizing the impacts of future potential global change scenarios on seawater intrusion at the aquifer scale
by
Morell, Ignacio
,
Senent-Aparicio, Javier
,
Antonio-Juan, Collados-Lara
in
Adaptation
,
Aquifers
,
Climate change
2020
Climate change affects rainfall and temperature producing a breakdown in the water balance and a variation in the dynamic of freshwater–seawater in coastal areas, exacerbating seawater intrusion (SWI) problems. The target of this paper is to propose a method to assess and analyze impacts of future global change (GC) scenarios on SWI at the aquifer scale in a coastal area. Some adaptation measures have been integrated in the definition of future GC scenarios incorporating complementary resources within the system in accordance with urban development planning. The proposed methodology summarizes the impacts of potential GC scenarios in terms of SWI status and vulnerability at the aquifer scale through steady pictures (maps and conceptual 2D cross sections for specific dates or statistics of a period) and time series for lumped indices. It is applied to the Plana de Oropesa-Torreblanca aquifer. The results summarize the influence of GC scenarios in the global status and vulnerability to SWI under some management scenarios. These GC scenarios would produce higher variability of SWI status and vulnerability.
Journal Article
Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human‐Induced Climate Change
by
Wartenburger, R.
,
Seneviratne, S. I.
,
Zscheischler, J.
in
Agricultural production
,
Atmospheric Processes
,
attribution
2019
Extremely high temperatures pose an immediate threat to humans and ecosystems. In recent years, many regions on land and in the ocean experienced heat waves with devastating impacts that would have been highly unlikely without human‐induced climate change. Impacts are particularly severe when heat waves occur in regions with high exposure of people or crops. The recent 2018 spring‐to‐summer season was characterized by several major heat and dry extremes. On daily average between May and July 2018 about 22% of the populated and agricultural areas north of 30° latitude experienced concurrent hot temperature extremes. Events of this type were unprecedented prior to 2010, while similar conditions were experienced in the 2010 and 2012 boreal summers. Earth System Model simulations of present‐day climate, that is, at around +1 °C global warming, also display an increase of concurrent heat extremes. Based on Earth System Model simulations, we show that it is virtually certain (using Intergovernmental Panel on Climate Change calibrated uncertainty language) that the 2018 north hemispheric concurrent heat events would not have occurred without human‐induced climate change. Our results further reveal that the average high‐exposure area projected to experience concurrent warm and hot spells in the Northern Hemisphere increases by about 16% per additional +1 °C of global warming. A strong reduction in fossil fuel emissions is paramount to reduce the risks of unprecedented global‐scale heat wave impacts. Key Points Twenty‐two percent of populated and agricultural areas of the Northern Hemisphere concurrently experienced hot extremes between May and July 2018 It is virtually certain that these 2018 northhemispheric concurrent heat events could not have occurred without human‐induced climate change We would experience a GCWH18‐like event nearly 2 out of 3 years at +1.5 °C and every year at +2 °C global warming
Journal Article
Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles
by
Hauser, Mathias
,
Seneviratne, Sonia I.
in
Atmospheric Processes
,
Climate and Interannual Variability
,
Climate change
2020
We analyze projected changes in climate extremes (extreme temperatures and heavy precipitation) in the multimodel ensembles of the fifth and sixth Coupled Model Intercomparison Projects (CMIP5 and CMIP6). The results reveal close similarity between both ensembles in the regional climate sensitivity of the projected multimodel mean changes in climate extremes, that is, their projected changes as a function of global warming. This stands in contrast to widely reported divergences in global (transient and equilibrium) climate sensitivity in the two multimodel ensembles. Some exceptions include higher warming in the South America monsoon region, lower warming in Southern Asia and Central Africa, and higher increases in heavy precipitation in Western Africa and the Sahel region in the CMIP6 ensemble. The multimodel spread in regional climate sensitivity is found to be large in both ensembles. In particular, it contributes more to intermodel spread in projected regional climate extremes compared with the intermodel spread in global climate sensitivity in CMIP6. Our results highlight the need to consider regional climate sensitivity as a distinct feature of Earth system models and a key determinant of projected regional impacts, which is largely independent of the models' response in global climate sensitivity. Plain Language Summary Many articles analyze and compare global climate sensitivity in climate models, that is, how their global warming differs at a given level of CO2 concentrations. However, global warming is only one quantity affecting impacts. To assess human‐ and ecosystem‐relevant impacts, it is essential to evaluate the regional climate sensitivity of climate models, that is, how their regional climate features differ at a given level of global warming. We analyze here regional climate sensitivity in the new multimodel ensemble that will underlie the conclusions of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). This ensemble of model projections is called the “Sixth Coupled Model Intercomparison Project” or CMIP6. We find that differences in regional climate sensitivity between models in CMIP6 often contribute more to the uncertainty of regional extremes projections than the uncertainty in global mean warming between models. Overall, the regional climate sensitivity features in the CMIP6 models' projections ensemble are very similar to those of the prior ensemble (CMIP5), although the model ensembles have been highlighted to differ in their global climate sensitivity over the 21st century. Key Points Changes in climate extremes as a function of global warming are quasilinear and determine a “regional climate sensitivity” in CMIP5 and CMIP6 The regional climate sensitivity of climate extremes is found to be very similar in CMIP5 and CMIP6, unlike global climate sensitivity Model spread in regional climate sensitivity in CMIP6 contributes more to uncertainty of projected extremes than global climate sensitivity
Journal Article
Attribution of the Influence of Human‐Induced Climate Change on an Extreme Fire Season
by
Gillett, N. P.
,
Zwiers, F. W.
,
Kirchmeier‐Young, M. C.
in
Anomalies
,
Anthropogenic climate changes
,
Anthropogenic factors
2019
A record 1.2 million ha burned in British Columbia, Canada's extreme wildfire season of 2017. Key factors in this unprecedented event were the extreme warm and dry conditions that prevailed at the time, which are also reflected in extreme fire weather and behavior metrics. Using an event attribution method and a large ensemble of regional climate model simulations, we show that the risk factors affecting the event, and the area burned itself, were made substantially greater by anthropogenic climate change. We show over 95% of the probability for the observed maximum temperature anomalies is due to anthropogenic factors, that the event's high fire weather/behavior metrics were made 2–4 times more likely, and that anthropogenic climate change increased the area burned by a factor of 7–11. This profound influence of climate change on forest fire extremes in British Columbia, which is likely reflected in other regions and expected to intensify in the future, will require increasing attention in forest management, public health, and infrastructure. Plain Language Summary A record 1.2 million ha burned in British Columbia, Canada's extreme wildfire season of 2017. Key factors in this unprecedented event were the extreme warm and dry conditions that prevailed at the time, which are also reflected in extreme fire weather and behavior metrics. To quantify the influence of human‐induced climate change on this event, we compare the likelihood of the risk factors affecting the extreme fire season to an estimate of what the likelihood might have been without the human component. We find that human‐induced climate change contributed greatly to the probability of the observed extreme warm temperatures, high wildfire risk, and large burned areas. Key Points An event attribution analysis is performed for the record‐breaking wildfire season of 2017 in BC Anthropogenic climate change greatly increased the likelihood of extreme warm temperatures and high fire risk A strong anthropogenic climate change contribution is also found for the large area burned
Journal Article
Climate‐Induced Saltwater Intrusion in 2100: Recharge‐Driven Severity, Sea Level‐Driven Prevalence
by
Reager, J. T.
,
Hamlington, Benjamin D.
,
David, Cédric H.
in
Abrupt/Rapid Climate Change
,
Air/Sea Constituent Fluxes
,
Air/Sea Interactions
2024
Saltwater intrusion is a critical concern for coastal communities due to its impacts on fresh ecosystems and civil infrastructure. Declining recharge and rising sea level are the two dominant drivers of saltwater intrusion along the land‐ocean continuum, but there are currently no global estimates of future saltwater intrusion that synthesize these two spatially variable processes. Here, for the first time, we provide a novel assessment of global saltwater intrusion risk by integrating future recharge and sea level rise while considering the unique geology and topography of coastal regions. We show that nearly 77% of global coastal areas below 60° north will undergo saltwater intrusion by 2100, with different dominant drivers. Climate‐driven changes in subsurface water replenishment (recharge) is responsible for the high‐magnitude cases of saltwater intrusion, whereas sea level rise and coastline migration are responsible for the global pervasiveness of saltwater intrusion and have a greater effect on low‐lying areas. Plain Language Summary Coastal watersheds around the globe are facing perilous changes to their freshwater systems. Driven by climatic changes in recharge and sea level working in tandem, sea water encroaches into coastal groundwater aquifers and consequently salinizes fresh groundwater, in a process called saltwater intrusion. To assess the vulnerability of coastal watersheds to future saltwater intrusion, we applied projections of sea level and groundwater recharge to a global analytical modeling framework. Nearly 77% of the global coast is expected to undergo measurable salinization by the year 2100. Changes in recharge have a greater effect on the magnitude of salinization, whereas sea level rise drives the widespread extensiveness of salinization around the global coast. Our results highlight the variable pressures of climate change on coastal regions and have implications for prioritizing management solutions. Key Points First global analysis of future saltwater intrusion vulnerability responding to spatially variable recharge and sea level rise is provided Recharge drives the extreme cases of saltwater intrusion, while sea level rise is responsible for its global pervasiveness Nearly 77% of global coastal areas below 60° north will undergo saltwater intrusion by 2100
Journal Article
Distilling the Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases to Large‐Scale Low‐Frequency Surface Ocean Changes Over the Past Century
by
Sanchez, Sara C.
,
Deser, Clara
,
Capotondi, Antonietta
in
Abrupt/Rapid Climate Change
,
Aerosols
,
Aerosols and Particles
2024
Anthropogenic aerosols (AER) and greenhouse gases (GHG)—the leading drivers of the forced historical change—produce different large‐scale climate response patterns, with correlations trending from negative to positive over the past century. To understand what caused the time‐evolving comparison between GHG and AER response patterns, we apply a low‐frequency component analysis to historical surface ocean changes from CESM1 single‐forcing large‐ensemble simulations. While GHG response is characterized by its first leading mode, AER response consists of two distinct modes. The first one, featuring long‐term global AER increase and global cooling, opposes GHG response patterns up to the mid‐twentieth century. The second one, featuring multidecadal variations in AER distributions and interhemispheric asymmetric surface ocean changes, appears to reinforce the GHG warming effect over recent decades. AER thus can have both competing and synergistic effects with GHG as their emissions change temporally and spatially. Plain Language Summary Anthropogenically forced climate change over the past century has been mainly caused by two types of emissions: greenhouse gases (GHG) and aerosols (AER). In general, sulfate aerosols from industrial sources can reflect shortwave radiation to yield a cooling effect opposite to the GHG warming effect. However, model simulations isolating GHG and AER forcings show that the large‐scale climate effect of AER does not always dampen the GHG effect. Instead, over recent decades, AER have produced surface ocean response patterns more like the GHG response. Using a novel low‐frequency statistical decomposion, we find that aerosols have driven two distinct modes of climate change patterns over the historical period. The first mode is associated with global aerosol increase, resulting in global‐wide cooling damping the GHG‐induced warming. The second mode is associated with the shift in aerosol emissions from north America/western Europe to southeast Asia, which drives regional changes enhancing the GHG effect. Our results highlight the importance of considering the temporal and spatial evolutions of AER emissions in assessing GHG and AER climate effects and attributing historical anthropogenic climate changes to GHG and AER forcings. Key Points Over the past century, GHG forced response is characterized by a single dominant mode while AER response consists of two distinct modes Monotonic global aerosol increases, mainly from Southeast Asia emissions, produce a global aerosol cooling mode opposing greenhouse warming Important in recent decades, geographic redistribution of AER emissions produces a second aerosol mode that reinforces greenhouse warming
Journal Article
The Effects of Heat Exposure on Human Mortality Throughout the United States
2020
Exposure to high ambient temperatures is an important cause of avoidable, premature death that may become more prevalent under climate change. Though extensive epidemiological data are available in the United States, they are largely limited to select large cities, and hence, most projections estimate the potential impact of future warming on a subset of the U.S. population. Here we utilize evaluations of the relative risk of premature death associated with temperature in 10 U.S. cities spanning a wide range of climate conditions to develop a generalized risk function. We first evaluate the performance of this generalized function, which introduces substantial biases at the individual city level but performs well at the large scale. We then apply this function to estimate the impacts of projected climate change on heat‐related nationwide U.S. deaths under a range of scenarios. During the current decade, there are 12,000 (95% confidence interval 7,400–16,500) premature deaths annually in the contiguous United States, much larger than most estimates based on totals for select individual cities. These values increase by 97,000 (60,000–134,000) under the high‐warming Representative Concentration Pathway (RCP) 8.5 scenario and by 36,000 (22,000–50,000) under the moderate RCP4.5 scenario by 2100, whereas they remain statistically unchanged under the aggressive mitigation scenario RCP2.6. These results include estimates of adaptation that reduce impacts by ~40–45% as well as population increases that roughly offset adaptation. The results suggest that the degree of climate change mitigation will have important health impacts on Americans. Key Points We develop a generalized risk function from U.S. epidemiological data to quantify nationwide heat‐related premature deaths We find ~12,000 premature deaths annually in the contiguous United States during the 2010s Projected deaths rise to ~110,000 and ~50,000 year−1 under high‐ and moderate‐warming scenarios, respectively, including population growth
Journal Article
Combining a Multi‐Lake Model Ensemble and a Multi‐Domain CORDEX Climate Data Ensemble for Assessing Climate Change Impacts on Lake Sevan
by
Shikhani, Muhammed
,
Boehrer, Bertram
,
Shatwell, Tom
in
21st century
,
Abrupt/Rapid Climate Change
,
Air/Sea Constituent Fluxes
2024
Global warming is shifting the thermal dynamics of lakes, with resulting climatic variability heavily affecting their mixing dynamics. We present a dual ensemble workflow coupling climate models with lake models. We used a large set of simulations across multiple domains, multi‐scenario, and multi GCM‐ RCM combinations from CORDEX data. We forced a set of multiple hydrodynamic lake models by these multiple climate simulations to explore climate change impacts on lakes. We also quantified the contributions from the different models to the overall uncertainty. We employed this workflow to investigate the effects of climate change on Lake Sevan (Armenia). We predicted for the end of the 21st century, under RCP 8.5, a sharp increase in surface temperature (4.3±0.7K)$(4.3\\pm 0.7\\,\\mathrm{K})$and substantial bottom warming (1.7±0.7K)$(1.7\\pm 0.7\\,\\mathrm{K})$ , longer stratification periods (+55 days) and disappearance of ice cover leading to a shift in mixing regime. Increased insufficient cooling during warmer winters points to the vulnerability of Lake Sevan to climate change. Our workflow leverages the strengths of multiple models at several levels of the model chain to provide a more robust projection and at the same time a better uncertainty estimate that accounts for the contributions of the different model levels to overall uncertainty. Although for specific variables, for example, summer bottom temperature, single lake models may perform better, the full ensemble provides a robust estimate of thermal dynamics that has a high transferability so that our workflow can be a blueprint for climate impact studies in other systems. Plain Language Summary Lakes are threatened by climate change because of effects related to the increasing temperature, long stratification, and ice disappearance. One of the best tools to predict these effects on lakes is numerical modeling of lakes that benefit from climate modeling. Climate modeling is normally done globally or in the so‐called general circulation model (GCM) or more detailed simulations on regional levels (RCM) like the CORDEX data set. In this study, we used the CORDEX data, which employed several climate models from several regions (domains) for several climatic scenarios (emissions scenarios) to force multiple lake models. This approach gave us an extensive prediction about various possible outputs. We applied this approach to Lake Sevan (Armenia), a large mountain lake. Our study predicted for the worst‐case scenario, an increase of the surface temperature by almost 4.3 K by the end of the 21st century, 1.75 K for bottom temperature, a total disappearance of ice cover, and about 55 extra days of stratification, showing its vulnerability for climate change. This optimized workflow uses the strength of a wide variety of models on the climate and lake levels to better understand the impact of climate change and quantify the sources of uncertainty in the workflow. Key Points Dual multi‐model ensemble of climate data and lake models is used for robust projections of climate change impacts Variance decomposition effectively identified the sources of uncertainty and contributions of different models to the overall uncertainty Significant warming, longer stratification periods, and loss of ice cover are predicted for Lake Sevan by the end of the 21st century
Journal Article
Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches
2019
The water resource is one of the main bases for the economic development of such a country. In recent decades, this resource has experienced a qualitative and quantitative degradation under the effect of global warming, especially in zones under arid and semi-arid climate as the case of Morocco. A better understanding of the relationship between climate change and its impacts on the availability of water resources involves a climatological analysis (rainfall and temperature), a piezometric, hydrogeochemical, and isotopic approach. In this investigation, the area taken as an example is the Essaouira Basin. Trend analysis of rainfall and temperature series shows that rainfall and temperature show a downward trend of 12% and an upward trend of 0.9 (for the period 1950–2015) to 1.5 °C (for the period 1988–2004), respectively. The piezometric study shows a downward trend following the shortening of recharge periods and recurrent drought. The hydrogeochemical approach indicates a deterioration of groundwater quality with an increase in salinity. This degradation is due to the marine intrusion and to the decrease of the recharge rate of aquifers caused by the decrease of precipitations under the climate change effect. The isotopic approach shows that climate change has no effect on the isotopic content of the groundwater in the study area.
Journal Article
A high-end estimate of sea-level rise for practitioners
by
Jenkins, Adrian
,
Hinkel, Jochen
,
Fettweis, Xavier
in
Abrupt/Rapid Climate Change
,
Adaptation
,
Air/Sea Constituent Fluxes
2022
Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
Journal Article