Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
871 result(s) for "Imprinting (Psychology)"
Sort by:
Imprinting and recalling cortical ensembles
Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single-cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion.
Ducklings imprint on the relational concept of \same or different\
The ability to identify and retain logical relations between stimuli and apply them to novel stimuli is known as relational concept learning. This has been demonstrated in a few animal species after extensive reinforcement training, and it reveals the brain's ability to deal with abstract properties. Here we describe relational concept learning in newborn ducklings without reinforced training. Newly hatched domesticated mallards that were briefly exposed to a pair of objects that were either the same or different in shape or color later preferred to follow pairs of new objects exhibiting the imprinted relation. Thus, even in a seemingly rigid and very rapid form of learning such as filial imprinting, the brain operates with abstract conceptual reasoning, a faculty often assumed to be reserved to highly intelligent organisms.
Chicks Like Consonant Music
The question of whether preference for consonance is rooted in acoustic properties important to the auditory system or is acquired through enculturation has not yet been resolved. Two-month-old infants prefer consonant over dissonant intervals, but it is possible that this preference is rapidly acquired through exposure to music soon after birth or in utero. Controlledrearing studies with animals can help shed light on this question because such studies allow researchers to distinguish between biological predispositions and learned preferences. In the research reported here, we found that newly hatched domestic chicks show a spontaneous preference for a visual imprinting object associated with consonant sound intervals over an identical object associated with dissonant sound intervals. We propose that preference for harmonic relationships between frequency components may be related to the prominence of harmonic spectra in biological sounds in natural environments.
HOW THE BRAIN PROCESSES SOCIAL INFORMATION: Searching for the Social Brain
▪ Abstract  Because information about gender, kin, and social status are essential for reproduction and survival, it seems likely that specialized neural mechanisms have evolved to process social information. This review describes recent studies of four aspects of social information processing: (a) perception of social signals via the vomeronasal system, (b) formation of social memory via long-term filial imprinting and short-term recognition, (c) motivation for parental behavior and pair bonding, and (d) the neural consequences of social experience. Results from these studies and some recent functional imaging studies in human subjects begin to define the circuitry of a “social brain.” Such neurodevelopmental disorders as autism and schizophrenia are characterized by abnormal social cognition and corresponding deficits in social behavior; thus social neuroscience offers an important opportunity for translational research with an impact on public health.
Naïve Chicks Prefer Hollow Objects
Biological predispositions influence approach and avoid responses from the time of birth or hatching. Neonates of species that require parental care (e.g. human babies and chicks of the domestic fowl) are attracted by stimuli associated with animate social partners, such as face-like configurations, biological motion and self-propulsion. The property of being filled is used as a cue of animacy by 8-month-old human infants but it is not known whether this reflects the effect of previous experience. We used chicks of the domestic fowl (Gallus gallus) to investigate whether the property of being filled vs. hollow elicits spontaneous or learned preferences. To this aim we tested preferences of naïve and imprinted chicks for hollow and closed cylinders. Contrary to our expectations, we documented an unlearned attraction for hollow stimuli. The preference for hollow stimuli decreased when chicks were imprinted on filled stimuli but did not increase when chicks were imprinted on hollow stimuli, suggesting that hollowness is not crucial to determine affiliative responses for imprinting objects. When chicks were imprinted on occluded stimuli that could be either filled or hollow, the preference for hollow stimuli emerged again, showing that imprinting does not disrupt the spontaneous preference for hollow objects. Further experiments revealed that hollow objects were mainly attractive by means of depth cues such as darker innards, more than as places to hide or as objects with high contrast. Our findings point to predisposed preferences for hollow objects, and suggest that early predispositions might be driven by factors different from animacy cues.
Biased learning affects mate choice in a butterfly
Early acquisition of mate preferences or mate-preference learning is associated with signal diversity and speciation in a wide variety of animal species. However, the diversity of mechanisms of mate-preference learning across taxa remains poorly understood. Using the butterfly Bicyclus anynana we uncover a mechanism that can lead to directional sexual selection via mate-preference learning: a bias in learning enhanced ornamentation, which is independent of preexisting mating biases. Naïve females mated preferentially with wild-type males over males with enhanced wing ornamentation, but females briefly exposed to enhanced males mated significantly more often with enhanced males. In contrast, females exposed to males with reduced wing ornamentation did not learn to prefer drab males. Thus, we observe both a learned change of a preexisting mating bias, and a bias in ability to learn enhanced male ornaments over reduced ornaments. Our findings demonstrate that females are able to change their preferences in response to a single social event, and suggest a role for biased learning in the evolution of visual sexual ornamentation.
Arithmetic in newborn chicks
Newly hatched domestic chicks were reared with five identical objects. On days 3 or 4, chicks underwent free-choice tests in which sets of three and two of the five original objects disappeared (either simultaneously or one by one), each behind one of two opaque identical screens. Chicks spontaneously inspected the screen occluding the larger set (experiment 1). Results were confirmed under conditions controlling for continuous variables (total surface area or contour length; experiment 2). In the third experiment, after the initial disappearance of the two sets (first event, FE), some of the objects were visibly transferred, one by one, from one screen to the other (second event, SE). Thus, computation of a series of subsequent additions or subtractions of elements that appeared and disappeared, one by one, was needed in order to perform the task successfully. Chicks spontaneously chose the screen, hiding the larger number of elements at the end of the SE, irrespective of the directional cues provided by the initial (FE) and final (SE) displacements. Results suggest impressive proto-arithmetic capacities in the young and relatively inexperienced chicks of this precocial species.
Variation in Human Mate Choice: Simultaneously Investigating Heritability, Parental Influence, Sexual Imprinting, and Assortative Mating
Human mate choice is central to individuals’ lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we looked at a large community-based sample of twins and their partners and parents ( individuals) to test for genetic and family environmental influences on mate choice, while controlling for and not controlling for the effects of assortative mating. Key traits were analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females’ mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernible pattern of mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also at least in part to phenotypic matching.
Spontaneous generalization of abstract multimodal patterns in young domestic chicks
From the early stages of life, learning the regularities associated with specific objects is crucial for making sense of experiences. Through filial imprinting, young precocial birds quickly learn the features of their social partners by mere exposure. It is not clear though to what extent chicks can extract abstract patterns of the visual and acoustic stimuli present in the imprinting object, and how they combine them. To investigate this issue, we exposed chicks (Gallus gallus) to three days of visual and acoustic imprinting, using either patterns with two identical items or patterns with two different items, presented visually, acoustically or in both modalities. Next, chicks were given a choice between the familiar and the unfamiliar pattern, present in either the multimodal, visual or acoustic modality. The responses to the novel stimuli were affected by their imprinting experience, and the effect was stronger for chicks imprinted with multimodal patterns than for the other groups. Interestingly, males and females adopted a different strategy, with males more attracted by unfamiliar patterns and females more attracted by familiar patterns. Our data show that chicks can generalize abstract patterns by mere exposure through filial imprinting and that multimodal stimulation is more effective than unimodal stimulation for pattern learning.
Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition
Epidemiological studies have shown an association between maternal overnutrition and increased risk of the progeny for the development of obesity as well as psychiatric disorders. Animal studies have shown results regarding maternal high-fat diet (HFD) and a greater risk of the offspring to develop obesity. However, it still remains unknown whether maternal HFD can program the central reward system in such a way that it will imprint long-term changes that will predispose the offspring to addictive-like behaviors that may lead to obesity. We exposed female dams to either laboratory chow or HFD for a period of 9 weeks: 3 weeks before conception, during gestation and lactation. Offspring born to either control or HFD-exposed dams were examined in behavioral, neurochemical, neuroanatomical, metabolic and positron emission tomography (PET) scan tests. Our results demonstrate that HFD offspring compared with controls consume more alcohol, exhibit increased sensitivity to amphetamine and show greater conditioned place preference to cocaine. In addition, maternal HFD leads to increased preference to sucrose as well as to HFD while leaving the general feeding behavior intact. The hedonic behavioral alterations are accompanied by reduction of striatal dopamine and by increased dopamine 2 receptors in the same brain region as evaluated by post-mortem neurochemical, immunohistochemical as well as PET analyses. Taken together, our data suggest that maternal overnutrition predisposes the offspring to develop hedonic-like behaviors to both drugs of abuse as well as palatable foods and that these types of behaviors may share common neuronal underlying mechanisms that can lead to obesity.