Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
698 result(s) for "Inactivators"
Sort by:
Production, purification, and quality assessment of borrelial proteins CspZ from Borrelia burgdorferi and FhbA from Borrelia hermsii
Borrelia , spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia , including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH 15-20  and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. Key points • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1 Graphical Abstract
The Multifaceted Role of Plasminogen in Cancer
Fibrinolytic factors like plasminogen, tissue-type plasminogen activator (tPA), and urokinase plasminogen activator (uPA) dissolve clots. Though mere extracellular-matrix-degrading enzymes, fibrinolytic factors interfere with many processes during primary cancer growth and metastasis. Their many receptors give them access to cellular functions that tumor cells have widely exploited to promote tumor cell survival, growth, and metastatic abilities. They give cancer cells tools to ensure their own survival by interfering with the signaling pathways involved in senescence, anoikis, and autophagy. They can also directly promote primary tumor growth and metastasis, and endow tumor cells with mechanisms to evade myelosuppression, thus acquiring drug resistance. In this review, recent studies on the role fibrinolytic factors play in metastasis and controlling cell-death-associated processes are presented, along with studies that describe how cancer cells have exploited plasminogen receptors to escape myelosuppression.
Complement factor H binds malondialdehyde epitopes and protects from oxidative stress
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases. Causes of age-related macular degeneration Age-related macular degeneration (AMD) is a leading cause of blindness in older people. A polymorphism in complement factor H (CFH) has been strongly associated with the disease, but the mechanism of the association has been unclear. Here it is shown that CFH binds specifically to the lipid peroxidation product, malondialdehyde, which builds up in AMD as a result of oxidative stress. Malondialdehyde and malondialdehyde-modified proteins induce inflammatory responses; CFH neutralizes this inflammatory potential both in vitro and in the mouse retina. A common CFH polymorphism associated with AMD leads to impaired binding to malondialdehyde, potentially explaining why homozygous individuals with this polymorphism have a 6–7-fold increased risk of developing the condition.
Complement in neurological disorders and emerging complement-targeted therapeutics
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies.In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders.
C3 glomerulopathy–associated CFHR1 mutation alters FHR oligomerization and complement regulation
C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5. We determined that native FHR1, FHR2, and FHR5 circulate in plasma as homo- and hetero-oligomeric complexes, the formation of which is likely mediated by the conserved N-terminal domain. In mutant FHR1, duplication of the N-terminal domain resulted in the formation of unusually large multimeric FHR complexes that exhibited increased avidity for the FHR1 ligands C3b, iC3b, and C3dg and enhanced competition with complement factor H (FH) in surface plasmon resonance (SPR) studies and hemolytic assays. These data revealed that FHR1, FHR2, and FHR5 organize a combinatorial repertoire of oligomeric complexes and demonstrated that changes in FHR oligomerization influence the regulation of complement activation. In summary, our identification and characterization of a unique CFHR1 mutation provides insights into the biology of the FHRs and contributes to our understanding of the pathogenic mechanisms underlying C3G.
Integrin activation by talin, kindlin and mechanical forces
Integrins are the major family of adhesion molecules that mediate cell adhesion to the extracellular matrix. They are essential for embryonic development and influence numerous diseases, including inflammation, cancer cell invasion and metastasis. In this Perspective, we discuss the current understanding of how talin, kindlin and mechanical forces regulate integrin affinity and avidity, and how integrin inactivators function in this framework. In this Perspective, Fässler and co-authors describe current models of how integrin adhesion molecules are activated and stabilised, and the importance of forces in this process.
Factor H-related 2 levels dictate FHR dimer composition
Factor H-related (FHR) protein 1 and 2 form dimers resulting in FHR-1 and -2 homodimers, and FHR-1/2 heterodimers. Dimerization is hypothesized to further increase their antagonistic function with complement regulator factor H (FH). So far, only FHR-1 homodimers and FHR-1/2 heterodimers could be quantified in a direct way. With the reported genetic associations between CFHR2 and complement-related diseases such as age related macular degeneration and C3-glomerulopathy, direct assessment of FHR-2/2 levels determining the dimer distribution of FHR-1 and -2 is needed to further elucidate their role within complement regulation. Therefore, novel in-house generated FHR-2 antibodies were used to develop a specific ELISA to enable direct quantification of FHR-2 homodimers. Allowing for the first time the accurate measurement of all FHR-1 and -2 containing dimers in a large cohort of healthy donors. By using native FHR-1 and -2 or deficient plasma, we determined the stability, kinetics and distribution of FHR-1 and -2 dimers. Additionally, we show how genetic variants influence dimer levels. Our results confirm a rapid, dynamic, dimer formation in plasma and show FHR-1/2 dimerization rearches a distribution equilibrium that is limited by the relative low levels of FHR-2 in relation to its dimerization partner FHR-1.
Potential False-Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads
Abstract Background Coronavirus disease-2019 (COVID-19) has spread widely throughout the world since the end of 2019. Nucleic acid testing (NAT) has played an important role in patient diagnosis and management of COVID-19. In some circumstances, thermal inactivation at 56°C has been recommended to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) before NAT. However, this procedure could theoretically disrupt nucleic acid integrity of this single-stranded RNA virus and cause false negatives in real-time polymerase chain reaction (RT-PCR) tests. Methods We investigated whether thermal inactivation could affect the results of viral NAT. We examined the effects of thermal inactivation on the quantitative RT-PCR results of SARS-CoV-2, particularly with regard to the rates of false-negative results for specimens carrying low viral loads. We additionally investigated the effects of different specimen types, sample preservation times, and a chemical inactivation approach on NAT. Results Our study showed increased Ct values in specimens from diagnosed COVID-19 patients in RT-PCR tests after thermal incubation. Moreover, about half of the weak-positive samples (7 of 15 samples, 46.7%) were RT-PCR negative after heat inactivation in at least one parallel testing. The use of guanidinium-based lysis for preservation of these specimens had a smaller impact on RT-PCR results with fewer false negatives (2 of 15 samples, 13.3%) and significantly less increase in Ct values than heat inactivation. Conclusion Thermal inactivation adversely affected the efficiency of RT-PCR for SARS-CoV-2 detection. Given the limited applicability associated with chemical inactivators, other approaches to ensure the overall protection of laboratory personnel need consideration.
Factor H-related protein 1 (FHR-1) is associated with atherosclerotic cardiovascular disease
Atherosclerotic cardiovascular disease (ACVD) is a lipid-driven inflammatory disease and one of the leading causes of death worldwide. Lipid deposits in the arterial wall lead to the formation of plaques that involve lipid oxidation, cellular necrosis, and complement activation, resulting in inflammation and thrombosis. The present study found that homozygous deletion of the CFHR1 gene, which encodes the plasma complement protein factor H-related protein 1 (FHR-1), was protective in two cohorts of patients with ACVD, suggesting that FHR-1 accelerates inflammation and exacerbates the disease. To test this hypothesis, FHR-1 was isolated from human plasma and was found to circulate on extracellular vesicles and to be deposited in atherosclerotic plaques. Surface-bound FHR-1 induced the expression of pro-inflammatory cytokines and tissue factor in both monocytes and neutrophils. Notably, plasma concentrations of FHR-1, but not of factor H, were significantly (p < 0.001) elevated in patients with ACVD, and correlated with the expression of the inflammation markers C-reactive protein, apolipoprotein serum amyloid protein A, and neopterin. FHR-1 expression also significantly correlated with plasma concentrations of low-density lipoprotein (LDL) (p < 0.0001) but not high-density lipoprotein (HDL). Taken together, these findings suggest that FHR-1 is associated with ACVD.
Complement regulators and inhibitory proteins
Key Points The complement system maintains tissue homeostasis and integrity and forms the first central and immediately acting line of defence against invading infectious microorganisms. Complement activation generates toxic products, which need to be precisely targeted to the surface of invading microorganisms, and initiates effector functions with the goal of clearing tagged foreign cells as well as modified self cells, such as apoptotic particles. Complement activation is tightly regulated by multiple inhibitors that are distributed as integral membrane proteins, surface-bound regulators and soluble effectors in the body fluids and plasma. The central steps of complement activation are controlled by multiple regulators or inhibitors that have redundant activity. Dysregulation of the delicate balance of complement activation products and regulators results in autoimmune diseases. Some pathogenic microorganisms mimic the surface of host cells and can remain unrecognized by the host immune system. Complement is one of the first lines of innate immune defence in the body. As reviewed here, complement regulators have a key role in keeping the complement system in check, and dysregulation of complement activation can result in pathology. The complement system is important for cellular integrity and tissue homeostasis. Complement activation mediates the removal of microorganisms and the clearance of modified self cells, such as apoptotic cells. Complement regulators control the spontaneously activated complement cascade and any disturbances in this delicate balance can result in damage to tissues and in autoimmune disease. Therefore, insights into the mechanisms of complement regulation are crucial for understanding disease pathology and for enabling the development of diagnostic tools and therapies for complement-associated diseases.