Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
12,070 result(s) for "Infant, Newborn, Diseases genetics"
Sort by:
Recessive TMEM167A variants cause neonatal diabetes, microcephaly, and epilepsy syndrome
Understanding the genetic causes of diseases that affect pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy, and diabetes syndrome (MEDS) is a congenital disorder with two known etiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking. We used genome sequencing to identify 6 individuals with MEDS caused by biallelic variants in the potentially novel disease gene TMEM167A. All had neonatal diabetes (diagnosed at <6 months) and severe microcephaly, and 5 also had epilepsy. TMEM167A is highly expressed in developing and adult human pancreas and brain. To gain insights into the mechanisms leading to diabetes, we silenced TMEM167A in EndoC-βH1 cells and knocked-in one patient's variant, p.Val59Glu, in induced pluripotent stem cells (iPSCs). Both TMEM167A depletion in EndoC-βH1 cells and the p.Val59Glu variant in iPSC-derived β cells sensitized β cells to ER stress. The p.Val59Glu variant impaired proinsulin trafficking to the Golgi and induced iPSC-β cell dysfunction. The discovery of TMEM167A variants as a genetic cause of MEDS highlights a critical role of TMEM167A in the ER to Golgi pathway in β cells and neurons.
YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress
Neonatal diabetes is caused by single gene mutations reducing pancreatic β cell number or impairing β cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in β cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human β cell models (YIPF5 silencing in EndoC-βH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects β cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and β cell failure. Partial YIPF5 silencing in EndoC-βH1 cells and a patient mutation in stem cells increased the β cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in β cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study
Traditional genetic testing focusses on analysis of one or a few genes according to clinical features; this approach is changing as improved sequencing methods enable simultaneous analysis of several genes. Neonatal diabetes is the presenting feature of many discrete clinical phenotypes defined by different genetic causes. Genetic subtype defines treatment, with improved glycaemic control on sulfonylurea treatment for most patients with potassium channel mutations. We investigated the effect of early, comprehensive testing of all known genetic causes of neonatal diabetes. In this large, international, cohort study, we studied patients with neonatal diabetes diagnosed with diabetes before 6 months of age who were referred from 79 countries. We identified mutations by comprehensive genetic testing including Sanger sequencing, 6q24 methylation analysis, and targeted next-generation sequencing of all known neonatal diabetes genes. Between January, 2000, and August, 2013, genetic testing was done in 1020 patients (571 boys, 449 girls). Mutations in the potassium channel genes were the most common cause (n=390) of neonatal diabetes, but were identified less frequently in consanguineous families (12% in consanguineous families vs 46% in non-consanguineous families; p<0·0001). Median duration of diabetes at the time of genetic testing decreased from more than 4 years before 2005 to less than 3 months after 2012. Earlier referral for genetic testing affected the clinical phenotype. In patients with genetically diagnosed Wolcott-Rallison syndrome, 23 (88%) of 26 patients tested within 3 months from diagnosis had isolated diabetes, compared with three (17%) of 18 patients referred later (>4 years; p<0·0001), in whom skeletal and liver involvement was common. Similarly, for patients with genetically diagnosed transient neonatal diabetes, the diabetes had remitted in only ten (10%) of 101 patients tested early (<3 months) compared with 60 (100%) of the 60 later referrals (p<0·0001). Patients are now referred for genetic testing closer to their presentation with neonatal diabetes. Comprehensive testing of all causes identified causal mutations in more than 80% of cases. The genetic result predicts the best diabetes treatment and development of related features. This model represents a new framework for clinical care with genetic diagnosis preceding development of clinical features and guiding clinical management. Wellcome Trust and Diabetes UK.
Toll-like receptor 4–mediated lymphocyte influx induces neonatal necrotizing enterocolitis
The nature and role of the intestinal leukocytes in necrotizing enterocolitis (NEC), a severe disease affecting premature infants, remain unknown. We now show that the intestine in mouse and human NEC is rich in lymphocytes that are required for NEC development, as recombination activating gene 1–deficient (Rag1–/–) mice were protected from NEC and transfer of intestinal lymphocytes from NEC mice into naive mice induced intestinal inflammation. The intestinal expression of the lipopolysaccharide receptor TLR4, which is higher in the premature compared with full-term human and mouse intestine, is required for lymphocyte influx through TLR4-mediated upregulation of CCR9/CCL25 signaling. TLR4 also mediates a STAT3-dependent polarization toward increased proinflammatory CD3+CD4+IL-17+ and reduced tolerogenic Foxp3+ Treg lymphocytes (Tregs). Th17 lymphocytes were required for NEC development, as inhibition of STAT3 or IL-17 receptor signaling attenuated NEC in mice, while IL-17 release impaired enterocyte tight junctions, increased enterocyte apoptosis, and reduced enterocyte proliferation, leading to NEC. Importantly, TLR4-dependent Th17 polarization could be reversed by the enteral administration of retinoic acid, which induced Tregs and decreased NEC severity. These findings identify an important role for proinflammatory lymphocytes in NEC development via intestinal epithelial TLR4 that could be reversed through dietary modification.
Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring
BackgroundGenomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance.MethodsWhole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found.ResultsWe now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss.ConclusionThe identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.
ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy
Diseases of ectopic calcification of the vascular wall range from lethal orphan diseases such as generalized arterial calcification of infancy (GACI), to common diseases such as hardening of the arteries associated with aging and calciphylaxis of chronic kidney disease (CKD). GACI is a lethal orphan disease in which infants calcify the internal elastic lamina of their medium and large arteries and expire of cardiac failure as neonates, while calciphylaxis of CKD is a ubiquitous vascular calcification in patients with renal failure. Both disorders are characterized by vascular Mönckeburg’s sclerosis accompanied by decreased concentrations of plasma inorganic pyrophosphate (PP i ). Here we demonstrate that subcutaneous administration of an ENPP1-Fc fusion protein prevents the mortality, vascular calcifications and sequela of disease in animal models of GACI, and is accompanied by a complete clinical and biomarker response. Our findings have implications for the treatment of rare and common diseases of ectopic vascular calcification. Generalized arterial calcification of infancy (GACI) is a terminal disease caused by the ENPP1 enzyme deficiency. Here, Albrigh et al . show that ENPP1 enzyme replacement therapy prevents the ectopic calcifications and mortality in mice with GACI, suggesting a novel treatment for vascular calcification in humans.
The Changing Landscape of Neonatal Diabetes Mellitus in Italy Between 2003 and 2022
Abstract Context In the last decade the Sanger method of DNA sequencing has been replaced by next-generation sequencing (NGS). NGS is valuable in conditions characterized by high genetic heterogeneity such as neonatal diabetes mellitus (NDM). Objective To compare results of genetic analysis of patients with NDM and congenital severe insulin resistance (c.SIR) identified in Italy in 2003-2012 (Sanger) vs 2013-2022 (NGS). Methods We reviewed clinical and genetic records of 104 cases with diabetes onset before 6 months of age (NDM + c.SIR) of the Italian dataset. Results Fifty-five patients (50 NDM + 5 c.SIR) were identified during 2003-2012 and 49 (46 NDM + 3 c.SIR) in 2013-2022. Twenty-year incidence was 1:103 340 (NDM) and 1:1 240 082 (c.SIR) live births. Frequent NDM/c.SIR genetic defects (KCNJ11, INS, ABCC8, 6q24, INSR) were detected in 41 and 34 probands during 2003-2012 and 2013-2022, respectively. We identified a pathogenic variant in rare genes in a single proband (GATA4) (1/42 or 2.4%) during 2003-2012 and in 8 infants (RFX6, PDX1, GATA6, HNF1B, FOXP3, IL2RA, LRBA, BSCL2) during 2013-2022 (8/42 or 19%, P = .034 vs 2003-2012). Notably, among rare genes 5 were recessive. Swift and accurate genetic diagnosis led to appropriate treatment: patients with autoimmune NDM (FOXP3, IL2RA, LRBA) were subjected to bone marrow transplant; patients with pancreas agenesis/hypoplasia (RFX6, PDX1) were supplemented with pancreatic enzymes, and the individual with lipodystrophy caused by BSCL2 was started on metreleptin. Conclusion NGS substantially improved diagnosis and precision therapy of monogenic forms of neonatal diabetes and c.SIR in Italy.
Neonatal Severe Hyperparathyroidism: Novel Insights From Calcium, PTH, and the CASR Gene
Abstract Context Neonatal severe hyperparathyroidism (NSHPT) is rare and potentially lethal. It is usually from homozygous or heterozygous germline-inactivating CASR variant(s). NSHPT shows a puzzling range of serum calcium and parathyroid hormone (PTH) levels. Optimal therapy is unclear. Evidence acquisition We categorized genotype/phenotype pairings related to CASRs. For the 2 pairings in NSHPT, each of 57 cases of neonatal severe hyperparathyroidism required calcium, PTH, upper normal PTH, and dosage of a germline pathogenic CASR variant. Evidence synthesis Homozygous and heterozygous NSHPT are 2 among a spectrum of 9 genotype/phenotype pairings relating to CASRs and NSHPT. For the 2 NSHPT pairings, expressions differ in CASR allelic dosage, CASR variant severity, and sufficiency of maternofetal calcium fluxes. Homozygous dosage of CASR variants was generally more aggressive than heterozygous. Among heterozygotes, high-grade CASR variants in vitro were more pathogenic in vivo than low-grade variants. Fetal calcium insufficiency as from maternal hypoparathyroidism caused fetal secondary hyperparathyroidism, which persisted and was reversible in neonates. Among NSHPT pairings, calcium and PTH were higher in CASR homozygotes than in heterozygotes. Extreme hypercalcemia (above 4.5 mM; normal 2.2–2.6 mM) is a robust biomarker, occurring only in homozygotes (83% of that pairing). It could occur during the first week. Conclusions In NSHPT pairings, the homozygotes for pathogenic CASR variants show higher calcium and PTH levels than heterozygotes. Calcium levels above 4.5 mM among NSHPT are frequent and unique only to most homozygotes. This cutoff supports early and robust diagnosis of CASR dosage. Thereby, it promotes definitive total parathyroidectomy in most homozygotes.
SGLT2 inhibitors therapy protects glucotoxicity-induced β-cell failure in a mouse model of human KATP-induced diabetes through mitigation of oxidative and ER stress
Progressive loss of pancreatic β-cell functional mass and anti-diabetic drug responsivity are classic findings in diabetes, frequently attributed to compensatory insulin hypersecretion and β-cell exhaustion. However, loss of β-cell mass and identity still occurs in mouse models of human K ATP -gain-of-function induced Neonatal Diabetes Mellitus (NDM), in the absence of insulin secretion. Here we studied the temporal progression and mechanisms underlying glucotoxicity-induced loss of functional β-cell mass in NDM mice, and the effects of sodium-glucose transporter 2 inhibitors (SGLT2i) therapy. Upon tamoxifen induction of transgene expression, NDM mice rapidly developed severe diabetes followed by an unexpected loss of insulin content, decreased proinsulin processing and increased proinsulin at 2-weeks of diabetes. These early events were accompanied by a marked increase in β-cell oxidative and ER stress, without changes in islet cell identity. Strikingly, treatment with the SGLT2 inhibitor dapagliflozin restored insulin content, decreased proinsulin:insulin ratio and reduced oxidative and ER stress. However, despite reduction of blood glucose, dapagliflozin therapy was ineffective in restoring β-cell function in NDM mice when it was initiated at >40 days of diabetes, when loss of β-cell mass and identity had already occurred. Our data from mouse models demonstrate that: i) hyperglycemia per se , and not insulin hypersecretion, drives β-cell failure in diabetes, ii) recovery of β-cell function by SGLT2 inhibitors is potentially through reduction of oxidative and ER stress, iii) SGLT2 inhibitors revert/prevent β-cell failure when used in early stages of diabetes, but not when loss of β-cell mass/identity already occurred, iv) common execution pathways may underlie loss and recovery of β-cell function in different forms of diabetes. These results may have important clinical implications for optimal therapeutic interventions in individuals with diabetes, particularly for those with long-standing diabetes.