Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
406 result(s) for "Infant Formula - microbiology"
Sort by:
Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants
To compare gut microbiota of healthy infants that were exclusively breast-fed or formula-fed, we recruited 91 infants, who were assigned into three different groups and fed by breast milk (30 babies), formula A (30 babies) or formula B (31 babies) exclusively for more than 4 months after birth. Faecal bacterial composition was tested. Among different groups, α diversity was lower in breast-fed group than formula-fed groups in 40 days of age, but increased significantly in 6 months of age. The Bifidobacterium represented the most predominant genus and Enterobacteriaceae the second in all groups. In 40 days of age, Bifidobacterium and Bacteroides were significantly higher, while Streptococcus and Enterococcus were significantly lower in breast-fed group than they were in formula A-fed group. Lachnospiraceae was lower in breast-fed than formula B-fed group. Veillonella and Clostridioides were lower in breast-fed than formula-fed groups. In 3 months of age there were less Lachnospiraceae and Clostridioides in breast-fed group than formula-fed groups. There were also significant differences of microbiota between formula A-fed and formula B-fed groups. Those differences may have impacts on their long-term health.
Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study
Exclusive breastfeeding is highly recommended for infants for at least the first six months of life. However, for some mothers, it may be difficult or even impossible to do so. This can lead to disturbances in the gut microbiota, which in turn may be related to a higher incidence of acute infectious diseases. Here, we aimed to evaluate whether a novel starting formula versus a standard formula provides a gut microbiota composition more similar to that of breastfed infants in the first 6 months of life. Two hundred and ten infants (70/group) were enrolled in the study and completed the intervention until 12 months of age. For the intervention period, infants were divided into three groups: Group 1 received formula 1 (INN) with a lower amount of protein, a proportion of casein to whey protein ratio of about 70/30 by increasing the content of α-lactalbumin, and with double the amount of docosahexaenoic acid/arachidonic acid than the standard formula; INN also contained a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis). Group 2 received the standard formula (STD) and the third group was exclusively breastfed (BF) for exploratory analysis. During the study, visits were made at 21 days, 2, 4, and 6 months of age, with ±3 days for the visit at 21 days of age, ±1 week for the visit at 2 months, and ±2 weeks for the others. Here, we reveal how consuming the INN formula promotes a similar gut microbiota composition to those infants that were breastfed in terms of richness and diversity, genera, such as Bacteroides, Bifidobacterium, Clostridium, and Lactobacillus, and calprotectin and short-chain fatty acid levels at 21 days, 2 and 6 months. Furthermore, we observed that the major bacteria metabolic pathways were more alike between the INN formula and BF groups compared to the STD formula group. Therefore, we assume that consumption of the novel INN formula might improve gut microbiota composition, promoting a healthier intestinal microbiota more similar to that of an infant who receives exclusively human milk.
Gastrointestinal Tolerance, Growth and Safety of a Partly Fermented Formula with Specific Prebiotics in Healthy Infants: A Double-Blind, Randomized, Controlled Trial
This study evaluated the effect of a partly fermented infant formula (using the bacterial strains Bifidobacterium breve C50 and Streptococcus thermophilus 065) with a specific prebiotic mixture (short-chain galacto-oligosaccharides (scGOS) and long-chain fructo-oligosaccharides (lcFOS; 9:1)) on the incidence of gastrointestinal symptoms, stool characteristics, sleeping and crying behaviour, growth adequacy and safety. Two-hundred infants ≤28 days of age were assigned either to experimental infant formula containing 30% fermented formula and 0.8 g/100 mL scGOS/lcFOS or to non-fermented control infant formula without scGOS/lcFOS. A group of breastfed infants served as a reference. No relevant differences in parent-reported gastrointestinal symptoms were observed. Stool consistency was softer in the experimental versus control group with values closer to the breastfed reference group. Daily weight gain was equivalent for both formula groups (0.5 SD margins) with growth outcomes close to breastfed infants. No clinically relevant differences in adverse events were observed, apart from a lower investigator-reported prevalence of infantile colic in the experimental versus control group (1.1% vs. 8.7%; p < 0.02). Both study formulae are well-tolerated, support an adequate infant growth and are safe for use in healthy term infants. Compared to the control formula, the partly fermented formula with prebiotics induces stool consistencies closer to breastfed infants.
Postbiotics for preventing and treating common infectious diseases in children: A systematic review
Postbiotics have recently been tentatively defined as bioactive compounds produced during a fermentation process (including microbial cells, cell constituents and metabolites) that supports health and/or wellbeing. Postbiotics are currently available in some infant formulas and fermented foods. We systematically reviewed evidence on postbiotics for preventing and treating common infectious diseases among children younger than 5 years. The PubMed, Embase, SpringerLink, and ScienceDirect databases were searched up to March 2019 for randomized controlled trials (RCTs) comparing postbiotics with placebo or no intervention. Seven RCTs involving 1740 children met the inclusion criteria. For therapeutic trials, supplementation with heat-killed Lactobacillus acidophilus LB reduced the duration of diarrhea (4 RCTs, n = 224, mean difference, MD, −20.31 h, 95% CI −27.06 to −13.57). For preventive trials, the pooled results from two RCTs (n = 537) showed that heat‐inactivated L. paracasei CBA L74 versus placebo reduced the risk of diarrhea (relative risk, RR, 0.51, 95% CI 0.37–0.71), pharyngitis (RR 0.31, 95% CI 0.12–0.83) and laryngitis (RR 0.44, 95% CI 0.29–0.67). There is limited evidence to recommend the use of specific postbiotics for treating pediatric diarrhea and preventing common infectious diseases among children. Further studies are necessary to determine the effects of different postbiotics
Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study
Human milk is considered the optimal nutrition for infants and found to contain significant numbers of viable bacteria. The aim of the study was to assess the effects of a specific synbiotic combination at doses closer to the bacterial cells present in human milk, on intestinal bifidobacteria proportions (relative abundance), reduction of potential pathogens and gut physiological conditions. A clinical study was conducted in 290 healthy infants aged from 6 to 19 weeks. Infants received either a control infant formula or one of the two investigational infant formulas (control formula with 0.8 g/100 ml scGOS/lcFOS and Bifidobacterium breve M-16V at either 1 × 10 4  cfu/ml or 1 × 10 6  cfu/ml). Exclusively breastfed infants were included as a reference. Analyses were performed on intention-to-treat groups and all-subjects-treated groups. After 6 weeks of intervention, the synbiotics at two different doses significantly increased the bifidobacteria proportions in healthy infants. The synbiotic supplementation also decreased the prevalence (infants with detectable levels) and the abundance of C. difficile . Closer to the levels in the breastfed reference group, fecal pH was significantly lower while l -lactate concentrations and acetate proportions were significantly higher in the synbiotic groups. All formulas were well tolerated and all groups showed a comparable safety profile based on the number and severity of adverse events and growth. In healthy infants, supplementation of infant-type bifidobacterial strain B. breve M-16V, at a dose close to bacterial numbers found in human milk, with scGOS/lcFOS (9:1) created a gut environment closer to the breastfed reference group. This specific synbiotic mixture may also support gut microbiota resilience during early life. Clinical Trial Registration This clinical study named Color Synbiotics Study, was registered in ClinicalTrials.gov on 18 March 2013. Registration number is NCT01813175. https://clinicaltrials.gov/ct2/show/NCT01813175 .
Term Infant Formulas Influencing Gut Microbiota: An Overview
Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.
Microbiological Quality of Powdered Infant Formula in Latin America
Cronobacter is a bacterial genus that includes seven species, and the species Cronobacter sakazakii is most related to meningitis and septicemia in infants associated with powdered infant formula (PIF). The objectives of this study were to evaluate the presence of C. sakazakii and to determine the microbiological quality of PIF for infant consumption. To do this, a total of 128 PIF samples were analyzed in four brands and countries (Chile, Mexico, Holland, and Brazil), considering three types of PIF: premature (PIF1), infant (PIF2), and follow-up (PIF3). Aerobic plate counts (APC) and Enterobacteriaceae (ENT) were assessed in accordance with Chilean official standards. The outer membrane protein A (ompA) gene was amplified to detect Cronobacter spp. and the fusA gene was amplified to identify C. sakazakii by using the PubMLST Web site and BLAST (NCBI). The antibiotic resistance profile was performed according to the Clinical and Laboratory Standards Institute standards. The pathogen was quantified by the most probable number (MPN). The results showed that APC median values for PIF1, PIF2, and PIF3 were 3.2, 4.9, and 4.8 log CFU g-1, respectively. The APC were higher in PIF2 (P < 0.01) from Holland (P < 0.01) in the commercial brand 4 (P < 0.01). The ENT median values in PIF1, PIF2, and PIF3 were 1.8, 1.5, and 1.7 log CFU g-1, respectively. Five strains of C. sakazakii and one strain of Cronobacter malonaticus were identified as having values between 0.023 and 2.3 MPN/g. All strains (100%) harbored the ompA, plasminogen activator (cpa), and hemolysin (hly) virulence genes. To conclude, C. sakazakii was found in four PIF samples from four Chilean products and one from Mexico, which is distributed throughout America. C. sakazakii strains exhibit virulence factors and resistance to ampicillin, thus posing a risk when PIFs are consumed by infants.
Exposure Assessment of Infants to Aflatoxin M1 through Consumption of Breast Milk and Infant Powdered Milk in Brazil
Aflatoxin M1 (AFM1) is an important biomarker that can be used to evaluate aflatoxin exposure in both humans and animals. The aim of this study was to evaluate the exposure degree of infants to AFM1 through consumption of breast milk and infant powdered milk in Brazil. For this purpose, the estimated daily intake (EDI) for infants was calculated based on the AFM1 levels analyzed in 94 breast milk (BM) samples collected in Southern Brazil, and 16 infant powdered milk (IPM) samples commonly commercialized in Brazil. AFM1 was detected in 5.3% (n = 5) and 43.8% (n = 7) of BM and IPM samples, with mean levels of 0.003 ng/g and 0.011 ng/g, respectively. All the IPM samples showed AFM1 levels lower than those established by the Brazilian guidelines (5 ng/g), and in most of the samples (81.25%) levels were below the maximum limit tolerated by the European Commission (0.025 ng/g). The EDI of AFM1 for infants aged zero to 12 months old showed values from 0.018 to 0.069 ng/kg body weight/day for BM, and 0.078 to 0.306 ng/kg body weight/day for IPM. Hazard index (HI) values for BM and IPM were less than one, except for IPM intended for infants up to one month. In conclusion, the exposure of infants to AFM1 was low, but continuous monitoring of mycotoxin levels is essential to minimize infant health risk.
Evaluation of Potential for Butyl and Heptyl Para-Hydroxybenzoate Enhancement of Thermal Inactivation of Cronobacter sakazakii during Rehydration of Powdered Infant Formula and Nonfat Dry Milk
In previous studies, parabens in model systems enhanced the thermal inactivation of foodborne pathogens, including Cronobacter sakazakii, Salmonella enterica serotype Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes. However, few studies have been conducted to evaluate this phenomenon in actual food systems. In the present study, the potential enhancement of thermal inactivation of C. sakazakii by butyl para-hydroxybenzoate (BPB) was evaluated in powdered infant formula (PIF) and nonfat dry milk (NFDM) in dry and rehydrated forms. When PIF was rehydrated with water at designated temperatures (65 to 80°C) in baby bottles, BPB did not enhance thermal inactivation. When rehydrated NFDM and lactose solutions with BPB were inoculated and heated at 58°C, BPB enhancement of thermal inactivation of C. sakazakii was negatively associated with the concentration of NFDM solutions in a dose-dependent manner, whereas thermal inactivation was enhanced in the presence of lactose regardless of its concentration, suggesting an interaction between proteins and BPB. Fluorescence testing further indicated an interaction between BPB and the proteins in PIF and NFDM. In inoculated dry NFDM with and without BPB stored at 24 and 55°C for 14 days, BPB did not substantially enhance bacterial inactivation. This study suggests that BPB is not likely to enhance mild thermal bacterial inactivation treatments in foods that have appreciable amounts of protein.
Isolation of Pathogenic Cronobacter Species as Bacteriological Risks Indicator in Powdered Infant Formula Available to Deprived Infants in Lagos Metropolis, Nigeria
Powdered infant formula (PIF) is rich in nutrients that support the survival and growth of bacteria that trigger food safety disorders in deprived infants through life-threatening illnesses. The study aims to examine and identify the incidence of pathogenic bacteria of concern in PIF upon reconstitution in lukewarm water. A total of 172 samples consisting of 38 brands of PIF available in the Lagos metropolis were sampled, suspended in water (10 g in 100 mL), and bacteria strains were isolated using combinational enrichment and selective culture techniques. Pure bacterial strains were characterized and identified based on their physiology and 16S rRNA gene sequence homology. While 85 bacterial strains were isolated from the enriched culture system, 20 strains were selectively isolated based on tolerance to sodium deoxycholate. Approximately 13% of the selected bacteria were identified as Cronobacter spp., exhibiting virulence traits including extracellular protease production, coagulation and proteolysis of casein, haem-agglutination, and β-haemolysis of human blood. Approximately 82% of the Cronobacter strains tolerated NaCl (10%) and bile salt; and exhibited resistance to cefotaxime, ceftriaxone, gentamicin, and Amoxicillin-clavulanic acid antibiotics. The presence of Cronobacter spp. in 13% of the PIF brands available to infants calls for concern about the safety of deprived infants that might be fed with such PIF. Consequently, PIF safety alerts need to be activate while further studies on critical points at which the pathogens get introduced to the PIFs need to be identified.