Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
202
result(s) for
"Infectious Diseases/Infectious Diseases of the Nervous System"
Sort by:
A Systematic Review of the Frequency of Neurocyticercosis with a Focus on People with Epilepsy
2010
The objective of this study is to conduct a systematic review of studies reporting the frequency of neurocysticercosis (NCC) worldwide.
PubMed, Commonwealth Agricultural Bureau (CAB) abstracts and 23 international databases were systematically searched for articles published from January 1, 1990 to June 1, 2008. Articles were evaluated for inclusion by at least two researchers focusing on study design and methods. Data were extracted independently using standardized forms. A random-effects binomial model was used to estimate the proportion of NCC among people with epilepsy (PWE). Overall, 565 articles were retrieved and 290 (51%) selected for further analysis. After a second analytic phase, only 4.5% of articles, all of which used neuroimaging for the diagnosis of NCC, were reviewed. Only two studies, both from the US, estimated an incidence rate of NCC using hospital discharge data. The prevalence of NCC in a random sample of village residents was reported from one study where 9.1% of the population harboured brain lesions of NCC. The proportion of NCC among different study populations varied widely. However, the proportion of NCC in PWE was a lot more consistent. The pooled estimate for this population was 29.0% (95%CI: 22.9%-35.5%). These results were not sensitive to the inclusion or exclusion of any particular study.
Only one study has estimated the prevalence of NCC in a random sample of all residents. Hence, the prevalence of NCC worldwide remains unknown. However, the pooled estimate for the proportion of NCC among PWE was very robust and could be used, in conjunction with estimates of the prevalence and incidence of epilepsy, to estimate this component of the burden of NCC in endemic areas. The previously recommended guidelines for the diagnostic process and for declaring NCC an international reportable disease would improve the knowledge on the global frequency of NCC.
Journal Article
Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity
by
Baltes, Nicholas J.
,
Nielsen, Kirsten
,
Charlier, Caroline
in
Acquired immune deficiency syndrome
,
AIDS
,
Animals
2010
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
Journal Article
Japanese Encephalitis—A Pathological and Clinical Perspective
2009
Japanese encephalitis (JE) is the leading form of viral encephalitis in Asia. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. JEV is endemic to many parts of Asia, where periodic outbreaks take hundreds of lives. Despite the catastrophes it causes, JE has remained a tropical disease uncommon in the West. With rapid globalization and climatic shift, JEV has started to emerge in areas where the threat was previously unknown. Scientific evidence predicts that JEV will soon become a global pathogen and cause of worldwide pandemics. Although some research documents JEV pathogenesis and drug discovery, worldwide awareness of the need for extensive research to deal with JE is still lacking. This review focuses on the exigency of developing a worldwide effort to acknowledge the prime importance of performing an extensive study of this thus far neglected tropical viral disease. This review also outlines the pathogenesis, the scientific efforts channeled into develop a therapy, and the outlook for a possible future breakthrough addressing this killer disease.
Journal Article
The Feasibility of Canine Rabies Elimination in Africa: Dispelling Doubts with Data
2010
Canine rabies causes many thousands of human deaths every year in Africa, and continues to increase throughout much of the continent.
This paper identifies four common reasons given for the lack of effective canine rabies control in Africa: (a) a low priority given for disease control as a result of lack of awareness of the rabies burden; (b) epidemiological constraints such as uncertainties about the required levels of vaccination coverage and the possibility of sustained cycles of infection in wildlife; (c) operational constraints including accessibility of dogs for vaccination and insufficient knowledge of dog population sizes for planning of vaccination campaigns; and (d) limited resources for implementation of rabies surveillance and control. We address each of these issues in turn, presenting data from field studies and modelling approaches used in Tanzania, including burden of disease evaluations, detailed epidemiological studies, operational data from vaccination campaigns in different demographic and ecological settings, and economic analyses of the cost-effectiveness of dog vaccination for human rabies prevention.
We conclude that there are no insurmountable problems to canine rabies control in most of Africa; that elimination of canine rabies is epidemiologically and practically feasible through mass vaccination of domestic dogs; and that domestic dog vaccination provides a cost-effective approach to the prevention and elimination of human rabies deaths.
Journal Article
Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis
by
Paul, Robert
,
Kirschnek, Susanne
,
Obermaier, Bianca
in
Animals
,
Anti-Bacterial Agents - pharmacology
,
Apoptosis
2009
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1beta and G-CSF as well as reduced levels of anti-inflammatory TGF-beta. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.
Journal Article
Clinical Features and Serum Biomarkers in HIV Immune Reconstitution Inflammatory Syndrome after Cryptococcal Meningitis: A Prospective Cohort Study
by
Wiesner, Darin L.
,
Musubire, Abdu
,
Kambugu, Andrew
in
Acquired immune deficiency syndrome
,
AIDS
,
Biological markers
2010
Although antiretroviral therapy (ART) improves survival in persons with cryptococcal meningitis (CM) and AIDS, ART frequently elicits HIV immune reconstitution inflammatory syndrome (IRIS), an exaggerated and frequently deadly inflammatory reaction that complicates recovery from immunodeficiency. The pathogenesis of IRIS is poorly understood and prediction of IRIS is not possible.
We prospectively followed 101 ART-naïve Ugandans with AIDS and recent CM for one year after initiating ART, and used Luminex multiplex assays to compare serum cytokine levels in participants who did or did not develop IRIS. IRIS occurred in 45% of participants with recent CM on ART, including 30% with central nervous system (CNS) manifestations. The median time to CM-IRIS was 8.8 wk on ART. Overall mortality on ART was 36% with IRIS and 21% without IRIS. CM-IRIS was independently associated with death (HR = 2.3, 95% CI 1.1-5.1, p = 0.04). Patients experiencing subsequent CM-IRIS had 4-fold higher median serum cryptococcal antigen (CRAG) levels pre-ART (p = 0.006). Higher pre-ART levels of interleukin (IL)-4 and IL-17 as well as lower tumor necrosis factor (TNF)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF) predicted future IRIS in multivariate analyses (area under the curve [AUC] = 0.82). An algorithm based on seven pre-ART serum biomarkers was a robust tool for stratifying high (83%), moderate (48%), and low risk (23%) for IRIS in the cohort. After ART was initiated, increasing levels of C-reactive protein (CRP), D-dimer, IL-6, IL-7, IL-13, G-CSF, or IL-1RA were associated with increasing hazard of IRIS by time-to-event analysis (each p≤0.001). At the time of IRIS onset, multiple proinflammatory cytokine responses were present, including CRP and IL-6. Mortality was predicted by pre-ART increasing IL-17, decreasing GM-CSF, and CRP level >32 mg/l (highest quartile). Pre-ART CRP level >32 mg/l alone was associated with future death (OR = 8.3, 95% CI 2.7-25.6, p<0.001).
Pre-ART increases in Th(17) and Th(2) responses (e.g., IL-17, IL-4) and lack of proinflammatory cytokine responses (e.g., TNF-α, G-CSF, GM-CSF, VEGF) predispose individuals to subsequent IRIS, perhaps as biomarkers of immune dysfunction and poor initial clearance of CRAG. Although requiring validation, these biomarkers might be an objective tool to stratify the risk of CM-IRIS and death, and could be used clinically to guide when to start ART or use prophylactic interventions.
Journal Article
Pneumococcal Serotypes and Mortality following Invasive Pneumococcal Disease: A Population-Based Cohort Study
2009
Pneumococcal disease is a leading cause of morbidity and mortality worldwide. The aim of this study was to investigate the association between specific pneumococcal serotypes and mortality from invasive pneumococcal disease (IPD).
In a nationwide population-based cohort study of IPD in Denmark during 1977-2007, 30-d mortality associated with pneumococcal serotypes was examined by multivariate logistic regression analysis after controlling for potential confounders. A total of 18,858 IPD patients were included. Overall 30-d mortality was 18%, and 3% in children younger than age 5 y. Age, male sex, meningitis, high comorbidity level, alcoholism, and early decade of diagnosis were significantly associated with mortality. Among individuals aged 5 y and older, serotypes 31, 11A, 35F, 17F, 3, 16F, 19F, 15B, and 10A were associated with highly increased mortality as compared with serotype 1 (all: adjusted odds ratio >or=3, p<0.001). In children younger than 5 y, associations between serotypes and mortality were different than in adults but statistical precision was limited because of low overall childhood-related mortality.
Specific pneumococcal serotypes strongly and independently affect IPD associated mortality.
Journal Article
Genomic Diversity and Evolution of the Lyssaviruses
2008
Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as 'Lagos Bat'. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses.
Journal Article
De Novo Synthesis of VP16 Coordinates the Exit from HSV Latency In Vivo
by
Preston, Chris M.
,
Thompson, Richard L.
,
Sawtell, Nancy M.
in
Amino acids
,
Animals
,
Cell cycle
2009
The mechanism controlling the exit from herpes simplex virus latency (HSV) is of central importance to recurrent disease and transmission of infection, yet interactions between host and viral functions that govern this process remain unclear. The cascade of HSV gene transcription is initiated by the multifunctional virion protein VP16, which is expressed late in the viral replication cycle. Currently, it is widely accepted that VP16 transactivating function is not involved in the exit from latency. Utilizing the mouse ocular model of HSV pathogenesis together with genetically engineered viral mutants and assays to quantify latency and the exit from latency at the single neuron level, we show that in vivo (i) the VP16 promoter confers distinct regulation critical for viral replication in the trigeminal ganglion (TG) during the acute phase of infection and (ii) the transactivation function of VP16 (VP16TF) is uniquely required for the exit from latency. TG neurons latently infected with the VP16TF mutant in1814 do not express detectable viral proteins following stress, whereas viruses with mutations in the other major viral transcription regulators ICP0 and ICP4 do exit the latent state. Analysis of a VP16 promoter/reporter mutant in the background of in1814 demonstrates that the VP16 promoter is activated in latently infected neurons following stress in the absence of other viral proteins. These findings support the novel hypothesis that de novo expression of VP16 regulates entry into the lytic program in neurons at all phases of the viral life cycle. HSV reactivation from latency conforms to a model in which stochastic derepression of the VP16 promoter and expression of VP16 initiates entry into the lytic cycle.
Journal Article
APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells
by
Palamara, Anna Teresa
,
Manservigi, Roberto
,
Marcocci, Maria Elena
in
Accumulation
,
Activation
,
Advertising executives
2010
Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ(1-40) and Aβ(1-42). Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD.
Journal Article