Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
144 result(s) for "Infectious Diseases/Sexually Transmitted Diseases"
Sort by:
Temporal Variability of Human Vaginal Bacteria and Relationship with Bacterial Vaginosis
Little is known about short-term bacterial fluctuations in the human vagina. This study used PCR to assess the variability in concentrations of key vaginal bacteria in healthy women and the immediate response to antibiotic treatment in women with bacterial vaginosis (BV). Twenty-two women assessed for BV using Amsel's criteria were evaluated daily for 7 or 14 days, then at 2, 3 and 4 weeks, using a panel of 11 bacterium-specific quantitative PCR assays. Participants with BV were treated with 5 days of intravaginal metronidazole. Participants without BV had vaginal biotas dominated by lactobacilli, whose levels fluctuated with menses. With onset of menstruation, quantities of Lactobacillus jensenii and Lactobacillus crispatus decreased and were found to be inversely related to Gardnerella vaginalis concentrations (p<0.001). Women with BV had a variety of fastidious bacteria whose concentrations dropped below detection thresholds 1-5 days after starting metronidazole. Recurrent BV was characterized by initial profound decreases of BV-associated bacteria after treatment followed by subsequent increases at relapse. The microbiota of the human vagina can be highly dynamic. Healthy women are colonized with Lactobacillus species, but levels can change dramatically over a month. Marked increases in G. vaginalis were observed during menses. Participants with BV have diverse communities of fastidious bacteria that are depleted by vaginal metronidazole therapy. Women with recurrent BV initially respond to antibiotic treatment with steep declines in bacterial concentrations, but these bacteria later reemerge, suggesting that antibiotic resistance in these bacteria is not an important factor mediating BV recurrence.
Characteristic Male Urine Microbiomes Associate with Asymptomatic Sexually Transmitted Infection
The microbiome of the male urogenital tract is poorly described but it has been suggested that bacterial colonization of the male urethra might impact risk of sexually transmitted infection (STI). Previous cultivation-dependent studies showed that a variety of non-pathogenic bacteria colonize the urethra but did not thoroughly characterize these microbiomes or establish links between the compositions of urethral microbiomes and STI. Here, we used 16S rRNA PCR and sequencing to identify bacteria in urine specimens collected from men who lacked symptoms of urethral inflammation but who differed in status for STI. All of the urine samples contained multiple bacterial genera and many contained taxa that colonize the human vagina. Uncultivated bacteria associated with female genital tract pathology were abundant in specimens from men who had STI. Urine microbiomes from men with STI were dominated by fastidious, anaerobic and uncultivated bacteria. The same taxa were rare in STI negative individuals. Our findings suggest that the composition of male urine microbiomes is related to STI.
Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts
Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.
The Genotype of Early-Transmitting HIV gp120s Promotes α4β7 –Reactivity, Revealing α4β7+/CD4+ T cells As Key Targets in Mucosal Transmission
Mucosal transmission of HIV is inefficient. The virus must breach physical barriers before it infects mucosal CD4+ T cells. Low-level viral replication occurs initially in mucosal CD4+ T cells, but within days high-level replication occurs in Peyer's patches, the gut lamina propria and mesenteric lymph nodes. Understanding the early events in HIV transmission may provide valuable information relevant to the development of an HIV vaccine. The viral quasispecies in a donor contracts through a genetic bottleneck in the recipient, such that, in low-risk settings, infection is frequently established by a single founder virus. Early-transmitting viruses in subtypes A and C mucosal transmission tend to encode gp120s with reduced numbers of N-linked glycosylation sites at specific positions throughout the V1-V4 domains, relative to typical chronically replicating isolates in the donor quasispecies. The transmission advantage gained by the absence of these N-linked glycosylation sites is unknown. Using primary α4β7 +/CD4+ T cells and a flow-cytometry based steady-state binding assay we show that the removal of transmission-associated N-linked glycosylation sites results in large increases in the specific reactivity of gp120 for integrin- α4β7. High-affinity for integrin α4β7, although not found in many gp120s, was observed in early-transmitting gp120s that we analyzed. Increased α4β7 affinity is mediated by sequences encoded in gp120 V1/V2. α4β7-reactivity was also influenced by N-linked glycosylation sites located in C3/V4. These results suggest that the genetic bottleneck that occurs after transmission may frequently involve a relative requirement for the productive infection of α4β7 +/CD4+ T cells. Early-transmitting gp120s were further distinguished by their dependence on avidity-effects to interact with CD4, suggesting that these gp120s bear unusual structural features not present in many well-characterized gp120s derived from chronically replicating viruses. Understanding the structural features that characterize early-transmitting gp120s may aid in the design of an effective gp120-based subunit vaccine. In the first days following sexual transmission, HIV replication occurs initially at relatively low levels in mucosal tissues because of a paucity of CD4+ T cell targets for the virus to infect. After a period of days, virus accesses specific gut tissues that are enriched in activated CD4+ T cells, where near-exponential replication ensues. The period of time before HIV accesses gut tissues represents a window of opportunity where a microbicide, pre-exposure and/or post-exposure antiretroviral prophylaxis or a vaccine-induced immune response could block infection. We previously reported that the HIV envelope protein gp120 binds to integrin α4β7 on the surface of CD4+ T cells. α4β7 mediates the homing of CD4+ T cells into the gut tissues where HIV can replicate exponentially. Here we report that the genotypic features that distinguish viruses isolated within the first month after infection, termed early-transmitting isolates, promote increased steady-state reactivity with α4β7. This property likely provides these viruses with enhanced transmission-fitness. These results suggest that the infection of α4β7 +/CD4+ T cells can play an important role early in HIV transmission. These findings have potentially important implications in the design of interventions to block the mucosal transmission of HIV.
The Effects of Circumcision on the Penis Microbiome
Circumcision is associated with significant reductions in HIV, HSV-2 and HPV infections among men and significant reductions in bacterial vaginosis among their female partners. We assessed the penile (coronal sulci) microbiota in 12 HIV-negative Ugandan men before and after circumcision. Microbiota were characterized using sequence-tagged 16S rRNA gene pyrosequencing targeting the V3-V4 hypervariable regions. Taxonomic classification was performed using the RDP Naïve Bayesian Classifier. Among the 42 unique bacterial families identified, Pseudomonadaceae and Oxalobactericeae were the most abundant irrespective of circumcision status. Circumcision was associated with a significant change in the overall microbiota (PerMANOVA p = 0.007) and with a significant decrease in putative anaerobic bacterial families (Wilcoxon Signed-Rank test p = 0.014). Specifically, two families-Clostridiales Family XI (p = 0.006) and Prevotellaceae (p = 0.006)-were uniquely abundant before circumcision. Within these families we identified a number of anaerobic genera previously associated with bacterial vaginosis including: Anaerococcus spp., Finegoldia spp., Peptoniphilus spp., and Prevotella spp. The anoxic microenvironment of the subpreputial space may support pro-inflammatory anaerobes that can activate Langerhans cells to present HIV to CD4 cells in draining lymph nodes. Thus, the reduction in putative anaerobic bacteria after circumcision may play a role in protection from HIV and other sexually transmitted diseases.
Mycoplasma genitalium: An Emerging Cause of Sexually Transmitted Disease in Women
Mycoplasma genitalium is an emerging sexually transmitted pathogen implicated in urethritis in men and several inflammatory reproductive tract syndromes in women including cervicitis, pelvic inflammatory disease (PID), and infertility. This comprehensive review critically examines epidemiologic studies of M. genitalium infections in women with the goal of assessing the associations with reproductive tract disease and enhancing awareness of this emerging pathogen. Over 27,000 women from 48 published reports have been screened for M. genitalium urogenital infection in high- or low-risk populations worldwide with an overall prevalence of 7.3% and 2.0%, respectively. M. genitalium was present in the general population at rates between those of Chlamydia trachomatis and Neisseria gonorrhoeae. Considering more than 20 studies of lower tract inflammation, M. genitalium has been positively associated with urethritis, vaginal discharge, and microscopic signs of cervicitis and/or mucopurulent cervical discharge in seven of 14 studies. A consistent case definition of cervicitis is lacking and will be required for comprehensive understanding of these associations. Importantly, evidence for M. genitalium PID and infertility are quite convincing and indicate that a significant proportion of upper tract inflammation may be attributed to this elusive pathogen. Collectively, M. genitalium is highly prevalent in high- and low-risk populations, and should be considered an etiologic agent of select reproductive tract disease syndromes in women.
Increasing Rates of Obesity among HIV-Infected Persons during the HIV Epidemic
The prevalence and factors associated with overweight/obesity among human immunodeficiency virus (HIV)-infected persons are unknown. We evaluated prospective data from a U.S. Military HIV Natural History Study (1985-2004) consisting of early diagnosed patients. Statistics included multivariate linear regression and longitudinal linear mixed effects models. Of 1682 patients, 2% were underweight, 37% were overweight, and 9% were obese at HIV diagnosis. Multivariate predictors of a higher body mass index (BMI) at diagnosis included more recent year of HIV diagnosis, older age, African American race, and earlier HIV stage (all p<0.05). The majority of patients (62%) gained weight during HIV infection. Multivariate factors associated with a greater increase in BMI during HIV infection included more recent year of diagnosis, lower BMI at diagnosis, higher CD4 count, lower HIV RNA level, lack of AIDS diagnosis, and longer HIV duration (all p<0.05). Nucleoside agents were associated with less weight gain; other drug classes had no significant impact on weight change in the HAART era. HIV-infected patients are increasingly overweight/obese at diagnosis and during HIV infection. Weight gain appears to reflect improved health status and mirror trends in the general population. Weight management programs may be important components of HIV care.
Genital Herpes Has Played a More Important Role than Any Other Sexually Transmitted Infection in Driving HIV Prevalence in Africa
Extensive evidence from observational studies suggests a role for genital herpes in the HIV epidemic. A number of herpes vaccines are under development and several trials of the efficacy of HSV-2 treatment with acyclovir in reducing HIV acquisition, transmission, and disease progression have just reported their results or will report their results in the next year. The potential impact of these interventions requires a quantitative assessment of the magnitude of the synergy between HIV and HSV-2 at the population level. A deterministic compartmental model of HIV and HSV-2 dynamics and interactions was constructed. The nature of the epidemiologic synergy was explored qualitatively and quantitatively and compared to other sexually transmitted infections (STIs). The results suggest a more substantial role for HSV-2 in fueling HIV spread in sub-Saharan Africa than other STIs. We estimate that in settings of high HSV-2 prevalence, such as Kisumu, Kenya, more than a quarter of incident HIV infections may have been attributed directly to HSV-2. HSV-2 has also contributed considerably to the onward transmission of HIV by increasing the pool of HIV positive persons in the population and may explain one-third of the differential HIV prevalence among the cities of the Four City study. Conversely, we estimate that HIV had only a small net impact on HSV-2 prevalence. HSV-2 role as a biological cofactor in HIV acquisition and transmission may have contributed substantially to HIV particularly by facilitating HIV spread among the low-risk population with stable long-term sexual partnerships. This finding suggests that prevention of HSV-2 infection through a prophylactic vaccine may be an effective intervention both in nascent epidemics with high HIV incidence in the high risk groups, and in established epidemics where a large portion of HIV transmission occurs in stable partnerships.
Mortality of HIV-Infected Patients Starting Antiretroviral Therapy in Sub-Saharan Africa: Comparison with HIV-Unrelated Mortality
Mortality in HIV-infected patients who have access to highly active antiretroviral therapy (ART) has declined in sub-Saharan Africa, but it is unclear how mortality compares to the non-HIV-infected population. We compared mortality rates observed in HIV-1-infected patients starting ART with non-HIV-related background mortality in four countries in sub-Saharan Africa. Patients enrolled in antiretroviral treatment programmes in Côte d'Ivoire, Malawi, South Africa, and Zimbabwe were included. We calculated excess mortality rates and standardised mortality ratios (SMRs) with 95% confidence intervals (CIs). Expected numbers of deaths were obtained using estimates of age-, sex-, and country-specific, HIV-unrelated, mortality rates from the Global Burden of Disease project. Among 13,249 eligible patients 1,177 deaths were recorded during 14,695 person-years of follow-up. The median age was 34 y, 8,831 (67%) patients were female, and 10,811 of 12,720 patients (85%) with information on clinical stage had advanced disease when starting ART. The excess mortality rate was 17.5 (95% CI 14.5-21.1) per 100 person-years SMR in patients who started ART with a CD4 cell count of less than 25 cells/microl and World Health Organization (WHO) stage III/IV, compared to 1.00 (0.55-1.81) per 100 person-years in patients who started with 200 cells/microl or above with WHO stage I/II. The corresponding SMRs were 47.1 (39.1-56.6) and 3.44 (1.91-6.17). Among patients who started ART with 200 cells/microl or above in WHO stage I/II and survived the first year of ART, the excess mortality rate was 0.27 (0.08-0.94) per 100 person-years and the SMR was 1.14 (0.47-2.77). Mortality of HIV-infected patients treated with combination ART in sub-Saharan Africa continues to be higher than in the general population, but for some patients excess mortality is moderate and reaches that of the general population in the second year of ART. Much of the excess mortality might be prevented by timely initiation of ART.
High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men
Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5' and 3' half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3-6 days before symptom onset and 14-17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized.