Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
443 result(s) for "Infectious bursal disease virus - immunology"
Sort by:
Generation of a novel attenuated IBDV vaccine strain by mutation of critical amino acids in IBDV VP5
Infectious bursal disease virus (IBDV) is an acute and highly infectious RNA virus known for its immunosuppressive capabilities, chiefly inflicting rapid damage to the bursa of Fabricius (BF) of chickens. Current clinical control of IBDV infection relies on vaccination. However, the emergence of novel variant IBDV (nVarIBDV) has posed a threat to the poultry industry across the globe, underscoring the great demand for innovative and effective vaccines. Our previous studies have highlighted the critical role of IBDV VP5 as an apoptosis-inducer in host cells. In this study, we engineered IBDV mutants via a reverse genetic system to introduce amino acid mutations in VP5. We found that the mutant IBDV-VP5/3m strain caused reduced host cell mortality, and that strategic mutations in VP5 reduced IBDV replication early after infection, thereby delaying cell death. Furthermore, inoculation of chickens with IBDV-VP5/3m effectively reduced damage to BF and induced neutralizing antibody production comparable to that of parental IBDV WT strain. Importantly, vaccination with IBDV-VP5/3m protected chickens against challenges with nVarIBDV, an emerging IBDV variant strain in China, reducing nVarIBDV loads in BF while alleviating bursal atrophy and splenomegaly, suggesting that IBDV-VP5/3m might serve as a novel vaccine candidate that could be further developed as an effective vaccine for clinical control of IBD. This study provides a new clue to the development of novel and effective vaccines.
Enhancing MyD88 oligomerization is one important mechanism by which IBDV VP2 induces inflammatory response
The inflammatory response is an essential component of innate immunity to defense against pathogens. Infectious bursal disease (IBD) is the most important immunosuppressive disease in chickens and is caused by the infectious bursal disease virus (IBDV). Acute inflammation is a typical pathogenic process for IBD, however, the underlying mechanism is not clear. Here, we report that IBDV induces obvious inflammatory response in vivo and in vitro . Furthermore, viral VP2 is identified as an important inflammatory stimulus. It is observed that IBDV VP2 can activate NF-κB signaling pathway and then increase IL-1β production. In detail, IBDV VP2 interacts with myeloid differentiation primary response gene 88 (MyD88), potentiates the oligomerization of MyD88 and assembly of MyD88 complex, which is one important element leading to NF-κB signaling pathway activation and IL-1β production increase. More meaningfully, residues 253/284 of viral VP2 are significantly involved in IBDV-induced inflammatory response through modulating the interaction strength between VP2 and MyD88 and the following MyD88-NF-κB-IL-1β signaling pathway. This study reveals one molecular mechanism that trigger inflammation during IBDV infection, which is of great significance for a deeper understanding of the pathogenic mechanisms of IBDV.
Immunogenicity and protection against infectious bursal disease via a transgenic Eimeria acervulina expressing IBDV VP2-2C3d fusion protein
Infectious bursal disease (IBD), caused by the infectious bursal disease virus (IBDV), significantly threatens global poultry health by inducing immunosuppression and causing economic losses. To enhance vaccination efficacy, we engineered a transgenic strain of Eimeria acervulina (Ea-2C3d) expressing a fusion protein composed of IBDV VP2 and three tandem C3d segments (3C3d), utilizing C3d's adjuvant properties to boost immune responses. The transgene was generated by integrating codon-optimized VP2 and 3C3d sequences into the E. acervulina genome using restriction enzyme-mediated transfection. PCR, protein, and genome sequencing confirmed the successful integration and expression of VP2 fusion C3d, but only two copies of C3d were successfully expressed, due to a partial deletion of one C3d copy during the transfection process. In vivo studies demonstrated that Ea-2C3d elicited significantly higher anti-VP2 antibody titers than the parental Ea-VP2 strain (P < 0.05), especially following second immunization. Upon challenge with virulent IBDV, chickens immunized with Ea-2C3d displayed reduced bursal lesions (histopathological score ≤ 1) and maintained bursal integrity (bursal index >0.7), comparable to those receiving a commercial subunit vaccine. Despite reduced reproductive capacity in the transgenic parasites, Ea-2C3d maintained its immunogenicity and safety. These findings highlight that C3d adjuvant enhances VP2-mediated protection in a coccidial vector, presenting a novel dual-protection strategy against IBD and coccidiosis.
Progress on chicken T cell immunity to viruses
Avian virus infection remains one of the most important threats to the poultry industry. Pathogens such as avian influenza virus (AIV), avian infectious bronchitis virus (IBV), and infectious bursal disease virus (IBDV) are normally controlled by antibodies specific for surface proteins and cellular immune responses. However, standard vaccines aimed at inducing neutralizing antibodies must be administered annually and can be rendered ineffective because immune-selective pressure results in the continuous mutation of viral surface proteins of different strains circulating from year to year. Chicken T cells have been shown to play a crucial role in fighting virus infection, offering lasting and cross-strain protection, and offer the potential for developing universal vaccines. This review provides an overview of our current knowledge of chicken T cell immunity to viruses. More importantly, we point out the limitations and barriers of current research and a potential direction for future studies.
Recombinant Lactococcus lactis co-expressing OmpH of an M cell-targeting ligand and IBDV-VP2 protein provide immunological protection in chickens
•In our study, we expressed the IBDV antigenic VP2 protein in the cytoplasm of food-grade L. lactis NZ3900 with pNZ8149.•To enhance antigen delivery, we targeted gut M cells for antigen presentation.•The results of this study indicate r-L. lactis expressing foreign protein is a highly specific antigen expression and delivery system that can be used to induce the high level of neutralizing antibodies in immunized animals. Infectious bursal disease virus (IBDV) is a highly contagious disease that results in enormous economic losses in the global poultry sector. Lactic acid bacteria are an appealing vehicle for the safe and effective delivery of heterologous protein antigens. Oral administration of the commensal bacterium Lactococcus lactis expressing recombinant fusion proteins has been used to elicit mucosal and systemic immune responses. In this study, a Lactococcus lactis NZ3900 strain co-expressing the outer membrane protein (Omp) H of the microfold (M) cell-targeting ligand and the viral capsid protein (VP)2 antigen of IBDV was genetically engineered, and its immunopotentiating capacity as an oral and injected vaccine in chickens was evaluated. Western blotting analysis demonstrated that VP2-OmpH was expressed in the cytoplasm of cells and had high immunoreactivity. An in vivo study showed that in the absence of any adjuvant, the recombinant L. lactis VP2-OmpH strain stimulated the immune response and protected against very virulent IBDV challenge in 100% and 80% of chickens immunized by injection and oral administration, respectively. Moreover, the antiviral neutralizing antibody titers induced by injection administration were higher than those induced by oral administration. Mucosal secretory IgA titers induced by oral administration were higher than those induced by injection administration. These results suggested that the recombinant L. lactis VP2-OmpH strain is a promising candidate vaccine to prevent IBDV infection.
Postbiotic-based recombinant receptor activator of NF-κB ligand enhanced oral vaccine efficiency in chicken
Functional M cells are differentiated by receptor activator of NF-κB ligand (RANKL) and capture of luminal antigens to initiate immune responses. We aimed to use postbiotic-based recombinant chicken RANKL (cRANKL) to promote M cell differentiation and test the efficacy of oral vaccines. Chicks were divided into three groups that were administered phosphate-buffered saline (PBS), cell extracts of wild-type Lactococcus lactis subsp. lactis IL1403 (WT_CE), or cell extracts of recombinant L. lactis expressing cRANKL (cRANKL_CE). The expression of the M cell marker was measured, and the gut microbiome was profiled. The efficiency of the infectious bursal disease (IBD) vaccine was tested after 12 consecutive days of administering cRANKL_CE. The chickens that were administered cRANKL_CE ( p  = 0.038) had significantly higher Annexin A5 ( ANXA5 ) mRNA expression levels than those in the PBS group (PBS vs. WT_CE, p  = 0.657). In the gut microbiome analysis, no significant changes were observed. However, the relative abundance of Escherichia-Shigella was negatively correlated ( r  =  − 0.43, p  = 0.019) with ANXA5 mRNA expression in Peyer’s patches. cRANKL_CE/IBD ( p  = 0.018) had significantly higher IBD-specific faecal IgA levels than PBS/IBD (PBS/IBD vs. WT_CE/IBD, p  = 0.217). Postbiotic-based recombinant cRANKL effectively improved the expression of M cell markers and the efficiency of oral vaccines. No significant changes were observed in the gut microbiome after administration of postbiotic-based recombinant cRANKL. This strategy can be used for the development of feed additives and adjuvants. Key points •  Postbiotic-based recombinant cRANKL enhanced the expression of ANXA5 in chicken. •  The relative abundance of Escherichia-Shigella was negatively correlated with ANXA5 expression. •  Postbiotic-based recombinant cRANKL effectively improved the efficiency of oral vaccine.
Development and Characterization of Monoclonal Antibodies Against VP3 Protein of Infectious Bursal Disease Virus
Infectious bursal disease virus (IBDV) causes an acute, highly contagious and immunosuppressive disease in 3–5‐week‐old chicken, called infectious bursal disease (IBD). Current vaccines targeting the hypervariable VP2 gene fail to provide cross‐protection against different IBDV strains, necessitating the development of novel diagnostic and preventive strategies that explore other candidate genes to ensure immune efficacy. Here, VP3, a conserved nucleocapsid protein of IBDV, was selected for further analysis. A prokaryotic expression vector, pET‐32a‐IBDV‐VP3, was constructed, followed by expression and purification of the recombinant protein. Following the intraperitoneal injection of recombinant proteins into the mice, eight monoclonal antibodies (mAbs) were identified by hybridoma cell fusion, clone purification, and immunological assays. Among the mAbs, mAb 19D8 effectively neutralized IBDV infection during viral attachment and penetration. Antigenic epitopes of mAb 19D8 were identified using alanine‐scanning mutagenesis. Our results showed that four amino acids, F20, K21, T23, and E25, located on an α‐helix of the VP3, were the key amino acids recognized by 19D8. Homologous and structural analyses revealed that these sites were highly conserved across different IBDV strains from diverse regions. These findings provide crucial insights into the antigenicity of VP3 and underscore the potential of VP3 as a target for the development of broad‐spectrum diagnostic tools and cross‐protection vaccines against IBDV.
Modified live infectious bursal disease virus (IBDV) vaccine delays infection of neonatal broiler chickens with variant IBDV compared to turkey herpesvirus (HVT)-IBDV vectored vaccine
•Modified live (MdLV) rather than HVT-IBDV vaccine delays neonatal varIBDV infection.•varIBDV replicates early in HVT-IBDV compared to MdLV vaccinated chicks.•HVT-IBDV vaccine induces suppression of T-cell response.•First week after HVT-IBDV vaccination demands strict biosecurity. Chickens are commonly processed around 35–45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50–60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×103 EID50) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8+ T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of early age varIBDV infection in broilers.
Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens
•Effect of IBD vaccine (228E®) on S. Enteritidis infected chickens was indicated.•The recorded mortalities were higher in the 228E®+SE infected group.•The anti-S. Enteritidis antibody titres were higher in the SE infected group.•The 228E®+SE group had higher bursal lesion scores than the SE infected group.•Chickens given IBDV vaccine failed antibody response to the S. Enteritidis. Chickens infected with both infectious bursal disease virus (IBDV) and Salmonella had higher mortality. In this work, we investigated the effect of IBDV vaccine (modified live-virus bursal disease vaccine, Nobilis strain 228E®) on experimentally infected chickens with Salmonella Enteritidis (SE). Four experimental groups were included in this study, negative control group, 228E®group, 228E®+SE infected group, and SE infected group. Chickens were ocularly administrated 228E® at 12days of age and orally infected with S. Enteritidis at 13days of age. Sera, intestinal fluid, blood, cloacal swabs and tissue samples were collected at 1, 2 and 3weeks post vaccination (PV). The recorded mortalities were higher in the 228E®+SE infected group, compared to the SE infected group. The anti-S. Enteritidis serum antibody titer and the intestinal mucosal IgA level were higher in the SE infected group at 2 and 3weeks PV, compared to 228E®+SE infected group. S. Enteritidis fecal shedding and organ colonization were significantly higher in the 228E®+SE infected group than the SE infected group at 2 and 3weeks PV. The 228E®+SE group had significantly lower bursa to body weight ratios at 2 and 3weeks PV, as well as had higher bursal lesion scores than the SE infected group. IBDV vaccine depressed the specific-SE systemic and mucosal antibody responses, but did not affect the specific-SE cellular immune responses. Chickens administrated IBDV vaccine, followed by S. Enteritidis infection, could cause a significant effect on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses to the S. Enteritidis and reduce the elimination and the clearance of S. Enteritidis.
A Single Mutation of VP2 is Responsible for the Lethality and Antigenicity Differences between Novel Variant and Very Virulent IBDV Strains
Infectious bursal disease is an acute, immunosuppressive infectious disease in chickens caused by the infectious bursal disease virus (IBDV), which causes huge economic losses to the global poultry industry. Persistently circulating very virulent IBDV (vvIBDV) and newly emerging novel variant IBDV (nVarIBDV) are the two dominant epidemic strains of IBDV in East Asian countries such as China. Compared to lethal vvIBDV, nonlethal nVarIBDV has more insidious pathogenicity and can partially escape the immune protection of the existing vvIBDV vaccine, suggesting its potential adaptive survival strategy. However, the underlying molecular mechanism remains unknown. The viral capsid protein VP2 is closely related to cell tropism, virulence, and antigenic variation of IBDV. In this study, for the first time, we demonstrated that residue 279 of VP2 is responsible for the difference in pathogenicity between nVarIBDV and vvIBDV and that the D279N substitution reduces the lethality of vvIBDV from 70% to 0%. Moreover, a significant reduction in the viral load and inflammatory factor levels in the immune organs and blood of infected chickens may be important mechanisms for reducing the lethality of IBDV. Additionally, residue 279 was an important molecular basis for the antigenic differences between nVarIBDV and vvIBDV. D279N substitution reduced the neutralizing ability of vvIBDV antiserum against nVarIBDV by affecting the binding ability of antibodies and antigens. Our results indicate that nVarIBDV has an infection transmission strategy that facilitates its survival by hiding viral pathogenicity and escaping antiserum neutralization, which not only has significant implications for the systemic cognition of viral genetic evolution and pathogenesis but also provides new ideas for the comprehensive prevention and control of IBDV.