Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
188 result(s) for "Infectious hematopoietic necrosis virus"
Sort by:
Phylogenetic relationships of Iranian infectious hematopoietic necrosis virus of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene
Infectious hematopoietic necrosis virus (IHNV), a member of family Rhabdoviridae and genus Novirhabdoviridae, causes a highly lethal disease of salmon and trout. In Iran IHNV was first detected in 2001 on farms rearing rainbow trout (Oncorhynchus mykiss). To evaluate the genetic relationships of IHNV from northern and western Iran, the sequences of a 651-nt region of the glycoprotein gene were determined for two Iranian isolates. These sequences were analyzed to evaluate their genetic relatedness to worldwide isolates representing the five known genogroups of IHNV. Iranian isolates were most closely related to European isolates within the genogroup E rather than those of North American genogroups U, M and L, or the Asian genogroup J. It appears that Iranian IHNV was most likely introduced to Iran from a source in Europe by the movement of contaminated fish eggs.
Analysis of the genome sequence of infectious hematopoietic necrosis virus HLJ-09 in China
Infectious hematopoietic necrosis virus (IHNV) is a highly contagious disease of juvenile salmonid fish. Six genome target fragments of the complete genome sequence of IHNV HLJ-09 were amplified by RT-PCR, and the 3′-terminal and 5′-terminal region of the genomic RNA were amplified using the RACE method. The complete genome sequence of HLJ-09 comprises 11,132 nucleotides (nt) (Accession number JX649101) and is different from that of other IHNV strains published in GenBank. Homology comparison and phylogenetic analysis of six ORF sequences were carried out using HLJ-09 and other IHNV strains published in GenBank. From phylogenetic tree analysis, the N gene, M gene, and P gene had the closest genetic relationship to IHNV-PRT from Korea. Phylogenetic analysis for the full length of the G gene showed that the HLJ-09 strain exhibited very close homology to the ChYa07, RtNag96, RtUi02, and RtGu01 strains from Korea and Japan, indicating that the HLJ-09 strain belonged to the genotype JRt. Ultimately, the Chinese IHNV HLJ-09 strain may have originated in Korea and Japan.
Genetic relatedness of infectious hematopoietic necrosis virus (IHNV) from cultured salmonids in Korea
Infectious hematopoietic necrosis virus (IHNV; n  = 18) was identified in the Korean national surveillance program between February 2013 and April 2015, suggesting that IHNV is a major viral pathogen in cultured salmonids. By phylogeny analysis, we found that the JRt-Nagano and JRt-Shizuoka groups could each be further subdivided into three distinct subtypes. The Korean strains were genetically similar to Japanese isolates, suggesting introduction from Japan. Interestingly, the amino acid sequences of the middle glycoprotein gene show that distinct Korean subtypes have circulated, indicating that the settled IHNVs might be evolved stably in cultured salmonid farm environments.
Heterologous Exchanges of Glycoprotein and Non-Virion Protein in Novirhabdoviruses: Assessment of Virulence in Yellow Perch (Perca flavescens) and Rainbow Trout (Oncorhynchus mykiss)
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins.
A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China
•An effective DNA vaccine was constructed by using glycoprotein of a J genotype IHNV strain.•The DNA vaccine was efficient to IHNV strains from different geographic locations in China.•A single 100ng dose of the DNA vaccine could provide significant protection to rainbow trout.•The significant protection could be induced at 4days post vaccination and lasted 180days. Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In this study, a DNA vaccine, designated pIHNch-G, was constructed with the glycoprotein (G) gene of a Chinese IHNV isolate SD-12 (also called Sn1203) of genotype J. The minimal dose of vaccine required, the expression of the Mx-1 gene in the muscle (vaccine delivery site) and anterior kidney, and the titers of the neutralizing antibodies produced were used to evaluate the vaccine efficacy. To assess the potential utility of the vaccine in controlling IHNV throughout China, the cross protective efficacy of the vaccine was determined by challenging fish with a broad range of IHNV strains from different geographic locations in China. A single 100ng dose of the vaccine conferred almost full protection to rainbow trout fry (3g) against waterborne or intraperitoneal injection challenge with IHNV strain SD-12 as early as 4days post-vaccination (d.p.v.), and significant protection was still observed at 180d.p.v. Intragenogroup challenges showed that the DNA vaccine provided similar protection to the fish against all the Chinese IHNV isolates tested, suggesting that the vaccine can be widely used in China. Mx-1 gene expression was significantly upregulated in the muscle tissue (vaccine delivery site) and anterior kidney in the vaccinated rainbow trout at both 4 and 7d.p.v. Similar levels of neutralizing antibodies were determined with each of the Chinese IHNV strains at 60 and 180d.p.v. This DNA vaccine should play an important role in the control of IHN in China.
Genotyping of Korean isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene
Glycoprotein (G) gene nucleotide sequences of four Korean isolates of infectious hematopoietic necrosis virus (IHNV) were analyzed to evaluate their genetic relatedness to worldwide isolates. All Korean isolates were closely related to Japanese isolates of genogroup JRt rather than to those of North American and European genogroups. It is believed that Korean IHNV has been most likely introduced from Japan to Korea by the movement of contaminated fish eggs. Among the Korean isolates, phylogenetically distinct virus types were obtained from sites north and south of a large mountain range, suggesting the possibility of more than one introduction of virus from Japan.
Antiviral Activities of Flavonoids Isolated from the Bark of Rhus verniciflua Stokes against Fish Pathogenic Viruses In Vitro
An 80% methanolic extract of Rhus verniciflua Stokes bark showed significant anti-viral activity against fish pathogenic infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in a cell-based assay measuring virus-induced cytopathic effect (CPE). Activity-guided fractionation and isolation for the 80% methanolic extract of R. verniciflua yielded the most active ethyl acetate fraction, and methyl gallate (1) and four flavonoids: fustin (2), fisetin (3), butin (4) and sulfuretin (5). Among them, fisetin (3) exhibited high antiviral activities against both IHNV and VHSV showing EC∧50 values of 27.1 and 33.3 μM with selective indices (SI = CC∧50/EC∧50) more than 15, respectively. Fustin (2) and sulfuretin (5) displayed significant antiviral activities showing EC∧50 values of 91.2-197.3 μM against IHNV and VHSV. In addition, the antiviral activity of fisetin against IHNV and VHSV occurred up to 5 hr post-infection and was not associated with direct virucidal effects in a timed addition study using a plaque reduction assay. These results suggested that the bark of R. verniciflua and isolated flavonoids have significant anti-viral activity against IHNV and VHSV, and also have potential to be used as anti-viral therapeutics against fish viral diseases.
Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly(I:C)
Background Sockeye Salmon are an iconic species widely distributed throughout the North Pacific. A devastating pathogen of Sockeye Salmon is infectious hematopoietic necrosis virus (IHNV, genus Novirhabdovirus, family Rhabdoviridae ). It has been postulated that IHNV is maintained in salmon populations by persisting over the life of its host and/or by residing in natural reservoirs other than its susceptible hosts. Herein we demonstrate the presence of IHNV in the brain of Sockeye Salmon that survived an experimentally-induced outbreak, suggesting the presence of viral persistence in this susceptible species. To understand the viral persistent state in Sockeye Salmon we profiled the transcriptome to evaluate the host response in asymptomatic carriers and to determine what effects (if any) IHNV exposure may have on subsequent virus challenges. Results A laboratory disease model to simulate a natural IHNV outbreak in Sockeye Salmon resulted in over a third of the population incurring acute IHN disease and mortality during the first four months after initial exposure. Nine months post IHNV exposure, despite the absence of disease and mortality, a small percentage (<4 %) of the surviving population contained IHNV in brain. Transcriptome analysis in brain of asymptomatic virus carriers and survivors without virus exhibited distinct transcriptional profiles in comparison to naïve fish. Characteristic for carriers was the up-regulation of genes involved in antibody production and antigen presentation. In both carriers and survivors a down-regulation of genes related to cholesterol biosynthesis, resembling an antiviral mechanism observed in higher vertebrates was revealed along with differences in nervous system development. Moreover, following challenge with poly(I:C), survivors and carriers displayed an elevated antiviral immune response in comparison to naïve fish. Conclusions IHN virus persistence was identified in Sockeye Salmon where it elicited a unique brain transcriptome profile suggesting an ongoing adaptive immune response. IHNV carriers remained uncompromised in mounting efficient innate antiviral responses when exposed to a viral mimic. The capacity of IHNV to reside in asymptomatic hosts supports a virus carrier hypothesis and if proven infectious, could have significant epidemiological consequences towards maintaining and spreading IHNV among susceptible host populations.
Effects of Three Types of Inactivation Agents on the Antibody Response and Immune Protection of Inactivated IHNV Vaccine in Rainbow Trout
Infectious hematopoietic necrosis virus (IHNV) infects salmonid fish, resulting in high mortality and serious economic losses to salmonid aquaculture. Therefore, an effective IHNV vaccine is urgently needed. To select an inactivation agent for the preparation of an effective IHNV vaccine, rainbow trout were immunized with mineral oil emulsions of IHNV vaccines inactivated by formaldehyde, binary ethylenimine (BEI), or β -propiolactone (BPL). The fish were challenged 8 weeks after vaccination, and their IgM antibody response and relative percent survival (RPS) were evaluated. The results show that formaldehyde, BEI, and BPL abolished IHNV HLJ-09 infectivity within 24, 48, and 24 h at final concentrations of 0.2%, 0.02%, and 0.01%, respectively. The mean levels of specific IgM, both in serum and mucus (collected from the skin surface and gills), for the three immunized groups (from high to low) ranked as follows: the BPL group, BEI group, and formaldehyde group. From weeks 5 to 9, the mean log2 serum titers of IgM in the BPL group were significantly higher compared with those of the other groups ( p  < 0.05) during the 9 weeks of observation after vaccination (immunized at weeks 0 and6). Mucus OD 490 values of the BPL group were significantly higher compared with those of the other groups ( p  < 0.05) when reaching their peak at weeks 5 and 8, but the difference between the formaldehyde and BEI groups was not significant ( p  > 0.05). The BPL-inactivated whole-virus vaccine had the greatest protective effect on the rainbow trout after challenge by an intraperitoneal injection of live IHNV, with an RPS rate of 91.67%, which was significantly higher compared with the BEI (83.33%) and formaldehyde (79.17%) groups. These results indicate that the BPL-inactivated IHNV oil-adjuvant vaccine was more effective than the formaldehyde- or BEI-inactivated vaccines. The results of this study provide an important foundation for further studies on inactivated IHNV vaccines.
Whole-Body Analysis of a Viral Infection: Vascular Endothelium is a Primary Target of Infectious Hematopoietic Necrosis Virus in Zebrafish Larvae
The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV), a rhabdovirus that represents an important threat to the salmonid culture industry. When incubated at 24 °C, a permissive temperature for virus replication, larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28 °C that is non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models.