Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
29,185 result(s) for "Inflammation - microbiology"
Sort by:
IL-36γ is a pivotal inflammatory player in periodontitis-associated bone loss
Periodontitis is a prevalent chronic inflammatory disease due to the host response (IL-1β, IL-6, TNF-α and IL-17A) to oral bacteria such as Porphyromonas gingivalis . The newer members of the IL-1 family, IL-36s (IL-36α/IL-36β/IL-36γ/IL-36Ra/IL-38) are known to be involved in host defense against P. gingivalis in oral epithelial cells (OECs) and are considered as key inflammatory mediators in chronic diseases. The aim of this study was to investigate the potential role of IL-36s in periodontitis. We showed here that IL-36γ mRNA gingival expression is higher in periodontitis patients, whereas IL-36β and IL-36Ra mRNA expression are lower compared to healthy controls. Interestingly, the elevated IL-36γ expression in patients is positively correlated with the RANKL / OPG ratio, an index of bone resorption. In vitro, IL-36γ expression was induced through TLR2 activation in primary OECs infected with P. gingivalis but not in gingival fibroblasts, the most widespread cell type in gingival connective tissue. In OECs, recombinant IL-36γ enhanced the expression of inflammatory cytokines ( IL-1β , IL-6, TNF-α and IL-36γ ), of TLR2 and importantly, the RANKL / OPG ratio. These findings suggest that IL-36γ could be a pivotal inflammatory player in periodontitis by perpetuating gingival inflammation and its associated alveolar bone resorption and could be a relevant therapeutic target.
Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens
Mutations in the nucleotide-binding oligomerization domain protein 12 (NLRP12) cause recurrent episodes of serosal inflammation. Here we show that NLRP12 efficiently sequesters HSP90 and promotes K48-linked ubiquitination and degradation of NOD2 in response to bacterial muramyl dipeptide (MDP). This interaction is mediated by the linker-region proximal to the nucleotide-binding domain of NLRP12. Consequently, the disease-causing NLRP12 R284X mutation fails to repress MDP-induced NF-κB and subsequent activity of the JAK/STAT signaling pathway. While NLRP12 deficiency renders septic mice highly susceptible towards MDP, a sustained sensing of MDP through NOD2 is observed among monocytes lacking NLRP12. This loss of tolerance in monocytes results in greater colonization resistance towards Citrobacter rodentium . Our data show that this is a consequence of NOD2-dependent accumulation of inflammatory mononuclear cells that correlates with induction of interferon-stimulated genes. Our study unveils a relevant process of tolerance towards the gut microbiota that is exploited by an attaching/effacing enteric pathogen. Mutations in nucleotide-binding oligomerization domain protein 12 (NLRP12) are known to effect inflammatory processes. Here the authors show that NLRP12-mediated proteasomal degradation of NOD2 in monocytes promotes bacterial tolerance and colonisation in a model of enteric infection.
Autophagy Controls an Intrinsic Host Defense to Bacteria by Promoting Epithelial Cell Survival: A Murine Model
Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of \"epithelial barrier turnover\" as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy.
Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome
ObjectiveThe microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. We aim to unravel interactions between diet, gut microbiota and their functional ability to induce intestinal inflammation.DesignWe investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn’s disease, ulcerative colitis, irritable bowel syndrome and the general population. Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Associations between diet and microbial features were explored per cohort, followed by a meta-analysis and heterogeneity estimation.ResultsWe identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn’s disease and UC (false discovery rate<0.05). Processed foods and animal-derived foods were consistently associated with higher abundances of Firmicutes, Ruminococcus species of the Blautia genus and endotoxin synthesis pathways. The opposite was found for plant foods and fish, which were positively associated with short-chain fatty acid-producing commensals and pathways of nutrient metabolism.ConclusionWe identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies.
Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome
Emulsifying agents, which are common food additives in the human diet, induce low-grade inflammation and obesity/metabolic syndrome in mice, suggesting that further investigation into the potential impact of dietary emulsifiers on the gut microbiota and human heath are warranted. Harmful effects of dietary emulsifiers Non-genetic factors are important contributors to the pathogenesis of inflammatory conditions such as such as inflammatory bowel disease and metabolic syndrome. Here the authors find that mice on a diet containing emulsifying agents develop low-grade inflammation and obesity/metabolic syndrome. These conditions correlate with a decrease in gut microbiota–epithelial distance through degradation of mucus layers, altered species composition and pro-inflammatory potential. Emulsifying agents are common food additives in the human diet, and these findings suggest that further investigations are warranted into their potential impact on gut microbiota and human health. The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota–host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine 1 . Thus, agents that disrupt mucus–bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro 2 , might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century 3 . Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host–microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that the broad use of emulsifying agents might be contributing to an increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.
The microbiota in adaptive immune homeostasis and disease
In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota–host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy.
Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer
Dysregulated inflammatory responses play a pivotal role in the initiation, development, and progression of tumors, as demonstrated by the association between ulcerative colitis and the increased risk of colon carcinoma. In this review, the underlying mechanisms for the initiation and development of ulcerative colitis and colitis-associated cancer are described, mainly focusing on the inflammation and inflammatory cytokine. Disruption of the intestinal mucosal barrier and bacterial invasion resulted in intestinal inflammation; and further TLR4/NF-κB stimulation in intestinal epithelial cells, inflammatory cell infiltration, and inflammatory cytokine release all confer survival advantages to or promote abnormal proliferation in susceptible cells. Importantly, the respective roles of TLR4/NF-κB, TNF–α, and IL-6 in intestinal epithelial cells and inflammatory cells are summarized in detail. A thorough understanding of these molecular mechanisms may help researchers and clinicians to explore novel approaches for the prevention and treatment of colitis-associated cancer.
Precision editing of the gut microbiota ameliorates colitis
Tungstate inhibits molybdenum-cofactor-dependent microbial respiratory pathways and shows potential as a selective treatment for microbial imbalances that occur during inflammation of the gastrointestinal tract. Countering colon inflammation Expansion of facultative anaerobic bacteria of the Enterobacteriaceae family in the gut is associated with dysbiosis—an imbalance in the microbiota—and inflammatory bowel disease. Sebastian Winter and colleagues show that tungstate treatment, which selectively inhibits molybdenum-cofactor-dependent microbial respiratory pathways that operate only during episodes of inflammation, mitigates inflammation in mouse models of colitis without causing any compositional alterations to the gut microbiota. This is a promising strategy for precision therapy of the microbiota in response to inflammatory disorders, but future work is needed to determine whether similar approaches could be relevant in humans. Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.
Richness of human gut microbiome correlates with metabolic markers
We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities. Analysis of the gut microbial gene composition in obese and non-obese individuals shows marked differences in bacterial richness between the two groups, with individuals with low richness exhibiting increased adiposity, insulin resistance, dyslipidaemia and inflammation; only a few bacterial marker species are needed to distinguish between individuals with high and low bacterial richness, providing potential for future diagnostic tools. Health is a gut issue Obesity is a risk factor for cardiovascular disease, diabetes, osteoporosis and other conditions including some cancers. Other influences must be at work to determine which, if any, metabolic diseases obese individuals will suffer, and two papers in this issue of Nature look at the role one of these factors, the richness of the gut microbiome. Le Chatelier et al . analysed the gut microbial gene composition in non-obese and obese individuals and found marked differences in gene and species richness. Individuals with low richness exhibited increased adiposity, insulin resistance, dyslipidaemia and inflammation. Obese individuals with low microbial richness tended to gain more body weight than those with high microbial richness. The authors also demonstrate that analysis of just a few bacterial marker species was sufficient to distinguish between high and low bacterial richness. Cotillard et al . monitored gut microbe profiles during diet-induced weight loss and weight stabilization interventions in obese or overweight individuals. They report that increased consumption of high-fibre foods, such as fruit and vegetables, leads to an increase in bacterial richness and improves some clinical symptoms associated with obesity. This finding supports previous work linking diet to the composition of gut microbe populations, and suggests that a permanent change might be achieved by appropriate diet.