Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,321
result(s) for
"Information, signal and communications theory"
Sort by:
Sparse Representation Based Fisher Discrimination Dictionary Learning for Image Classification
by
Yang, Meng
,
Feng, Xiangchu
,
Zhang, Lei
in
Analysis
,
Applied sciences
,
Artificial Intelligence
2014
The employed dictionary plays an important role in sparse representation or sparse coding based image reconstruction and classification, while learning dictionaries from the training data has led to state-of-the-art results in image classification tasks. However, many dictionary learning models exploit only the discriminative information in either the representation coefficients or the representation residual, which limits their performance. In this paper we present a novel dictionary learning method based on the Fisher discrimination criterion. A structured dictionary, whose atoms have correspondences to the subject class labels, is learned, with which not only the representation residual can be used to distinguish different classes, but also the representation coefficients have small within-class scatter and big between-class scatter. The classification scheme associated with the proposed Fisher discrimination dictionary learning (FDDL) model is consequently presented by exploiting the discriminative information in both the representation residual and the representation coefficients. The proposed FDDL model is extensively evaluated on various image datasets, and it shows superior performance to many state-of-the-art dictionary learning methods in a variety of classification tasks.
Journal Article
Non-uniform Deblurring for Shaken Images
2012
Photographs taken in low-light conditions are often blurry as a result of camera shake, i.e. a motion of the camera while its shutter is open. Most existing deblurring methods model the observed blurry image as the convolution of a sharp image with a uniform blur kernel. However, we show that blur from camera shake is in general mostly due to the 3D rotation of the camera, resulting in a blur that can be significantly
non-uniform
across the image. We propose a new parametrized geometric model of the blurring process in terms of the rotational motion of the camera during exposure. This model is able to capture non-uniform blur in an image due to camera shake using a single global descriptor, and can be substituted into existing deblurring algorithms with only small modifications. To demonstrate its effectiveness, we apply this model to two deblurring problems; first, the case where a single blurry image is available, for which we examine both an approximate marginalization approach and a maximum a posteriori approach, and second, the case where a sharp but noisy image of the scene is available in addition to the blurry image. We show that our approach makes it possible to model and remove a wider class of blurs than previous approaches, including uniform blur as a special case, and demonstrate its effectiveness with experiments on synthetic and real images.
Journal Article
Low-complexity near-optimal signal detection for uplink large-scale MIMO systems
2014
The minimum mean square error (MMSE) signal detection algorithm is near-optimal for uplink multi-user large-scale multiple-input–multiple-output (MIMO) systems, but involves matrix inversion with high complexity. It is firstly proved that the MMSE filtering matrix for large-scale MIMO is symmetric positive definite, based on which a low-complexity near-optimal signal detection algorithm by exploiting the Richardson method to avoid the matrix inversion is proposed. The complexity can be reduced from 𝒪(K3) to 𝒪(K2), where K is the number of users. The convergence proof of the proposed algorithm is also provided. Simulation results show that the proposed signal detection algorithm converges fast, and achieves the near-optimal performance of the classical MMSE algorithm.
Journal Article
Clustering by Passing Messages Between Data Points
2007
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such \"exemplars\" can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initial choice is close to a good solution. We devised a method called \"affinity propagation,\" which takes as input measures of similarity between pairs of data points. Real-valued messages are exchanged between data points until a high-quality set of exemplars and corresponding clusters gradually emerges. We used affinity propagation to cluster images of faces, detect genes in microarray data, identify representative sentences in this manuscript, and identify cities that are efficiently accessed by airline travel. Affinity propagation found clusters with much lower error than other methods, and it did so in less than one-hundredth the amount of time.
Journal Article
Coherent optical orthogonal frequency division multiplexing
by
Athaudage, C.
,
Shieh, W.
in
Applied sciences
,
Exact sciences and technology
,
Information, signal and communications theory
2006
Coherent optical orthogonal frequency division multiplexing is proposed to combat dispersion in optical media. It is shown that optical-signal-to-noise ratio penalty at 10Gbit/s is maintained below 2dB for 3000 km transmission of standard-singlemode fibre without dispersion compensation.
Journal Article
Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems
by
Dai, Linglong
,
Gao, Zhen
,
Wang, Zhaocheng
in
4G mobile communication
,
5G wireless communications
,
Algorithms
2014
Large-scale multiple-input multiple-output (MIMO) with high spectrum and energy efficiency is a very promising key technology for future 5G wireless communications. For large-scale MIMO systems, accurate channel state information (CSI) acquisition is a challenging problem, especially when each user has to distinguish and estimate numerous channels coming from a large number of transmit antennas in the downlink. Unlike the conventional orthogonal pilots whose pilot overhead prohibitively increases with the number of transmit antennas, a spectrum-efficient superimposed pilot design for downlink large-scale MIMO scenarios is proposed, where frequency-domain pilots of different transmit antennas occupy completely the same subcarriers in the frequency domain. Meanwhile, spatial–temporal common sparsity of large-scale MIMO channels motivates us to exploit the emerging theory of structured compressive sensing (CS) for reliable MIMO channel estimation, which is realised by the proposed structured subspace pursuit (SSP) algorithm to simultaneously recover multiple channels with low pilot overhead. Simulation results demonstrate that the proposed scheme performs well and can approach the performance bound.
Journal Article