Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
663
result(s) for
"Infrasound"
Sort by:
Infrasonic Earthquake Detectability Investigated in Southern Part of Japan, 2019
2021
The Kochi University of Technology (KUT) Infrasound Sensor Network contains 30 infrasound sensors which are distributed all over Japan especially in Shikoku Island. At all infrasound stations installed with three-axis accelerometers to measure the peak ground acceleration (PGA). Many earthquakes were detected by our system after establishing of the network since 2016. In this study we will focus on all the possibilities for infrasound detection generated from earthquakes using KUT sensor network and International Monitoring system (IMS) stations for the earthquakes which were detected in southern part of Japan during 2019. As for earthquakes with strike-slip mechanisms the P-waves could not be detected by our sensors. In addition, The conversion from seismic to acoustic waves can be happened through the generating of the T-phase from oceanic earthquakes. On 9 May 2019, progressive multi-channel cross correlation (PMCC) method applied infrasound and hydroacoustic waves from two earthquakes happened in west of Kyushu Island as the T-phase was well-recorded at H11N station near Wake Island. Moreover, infrasound propagation modeling is applied to the reconstructed atmosphere profile by Ground to Space Model (AVO-G2S) to confirm the infrasound arrivals, furthermore the 3D ray tracing process and the calculations by using the transmission loss equation with normal modes and parabolic equation methods are investigated. The study confirmed the infrasound generation scenario from the T-phase of oceanic propagation.
Journal Article
Fibre optic distributed acoustic sensing of volcanic events
by
Schwarz, Benjamin
,
Krawczyk, Charlotte M.
,
Jousset, Philippe
in
704/2151/2809
,
704/2151/598
,
Acoustics
2022
Understanding physical processes prior to and during volcanic eruptions has improved significantly in recent years. However, uncertainties about subsurface structures distorting observed signals and undetected processes within the volcano prevent volcanologists to infer subtle triggering mechanisms of volcanic phenomena. Here, we demonstrate that distributed acoustic sensing (DAS) with optical fibres allows us to identify volcanic events remotely and image hidden near-surface volcanic structural features. We detect and characterize strain signals associated with explosions and locate their origin using a 2D-template matching between picked and theoretical wave arrival times. We find evidence for non-linear grain interactions in a scoria layer of spatially variable thickness. We demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms. We identify very small volcanic events, which we relate to fluid migration and degassing. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS.
Fibre Optic Distributed Acoustic Sensing on Mount Etna provides new opportunities for monitoring volcanic processes and demonstrates nonlinear interaction of infrasound wave with scoria layer, mapping its thickness and illuminating hidden structures.
Journal Article
A Deep Learning Approach for Distant Infrasound Signals Classification
2025
Infrasound signal classification represents a critical challenge that demands immediate attention. Feature extraction stands as the core concept for enhancing classification accuracy in infrasound signal processing. However, existing feature extraction methodologies fail to meet the requirements for long-distance detection scenarios. To address these limitations, this study proposes a novel classification framework based on the spatiotemporal characteristics of infrasound signals. The proposed framework incorporates advanced signal processing techniques, signal enhancement algorithms, and deep learning architectures to achieve precise classification of infrasound signals. This paper designs three sets of comparative experiments, and the results demonstrate that the proposed method achieves a classification accuracy rate of 83.9% on chemical explosion and seismic infrasound datasets, outperforming eight other comparative classification methods. This substantiates the efficacy of the proposed approach.
Journal Article
Application of Correlation Analysis for Assessment of Infrasound Signals Emission by Wind Turbines
by
Wotzka, Daria
,
Zmarzły, Dariusz
,
Boczar, Tomasz
in
infrasound correlation analysis
,
infrasound measurement system
,
wind turbine
2020
The study reported in this paper is concerned with areas related to developing methods of measuring, processing and analyzing infrasound noise caused by operation of wind farms. The paper contains the results of the correlation analysis of infrasound signals generated by a wind turbine with a rated capacity of 2 MW recorded by three independent measurement setups comprising identical components and characterized by the same technical parameters. The measurements of infrasound signals utilized a dedicated measurement system called INFRA, which was developed and built by KFB ACOUSTICS Sp. z o.o. In particular, the scope of the paper includes the results of correlation analysis in the time domain, which was carried out using the autocovariance function separately for each of the three measuring setups. Moreover, the courses of the cross-correlation function were calculated separately for each of the potential combinations of infrasound range recorded by the three measuring setups. In the second stage, a correlation analysis of the recorded infrasound signals in the frequency domain was performed, using the coherence function. In the next step, infrasound signals recorded in three setups were subjected to time-frequency transformations. In this part, the waveforms of the scalograms were determined by means of continuous wavelet transform. Wavelet coherence waveforms were calculated in order to determine the level of the correlation of the obtained dependencies in the time-frequency domain. The summary contains the results derived from using correlation analysis methods in the time, frequency and time-frequency domains.
Journal Article
The atmosphere of Mars as observed by InSight
by
Warren, Tristram
,
Mittelholz Anna
,
Viudez-Moreiras Daniel
in
Aerodynamics
,
Airglow
,
Atmosphere
2020
The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars’s atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars’s meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars’s atmosphere by InSight will be key for prediction capabilities and future exploration.The InSight lander has expanded our knowledge of the atmosphere of Mars by observing various phenomena, including airglow, bores, infrasound and Earth-like turbulence.
Journal Article
THE SEISMOACOUSTIC WAVEFIELD: A NEW PARADIGM IN STUDYING GEOPHYSICAL PHENOMENA
2010
The field of seismoacoustics is emerging as an important discipline in its own right, owing to the value of colocated seismic and infrasound arrays that sample elastic energy propagating in both the solid Earth and the atmosphere. The fusion of seismic and infrasonic data provides unique constraints for studying a broad range of topics including the source physics of natural and man‐made events, interaction of mechanical waves in Earth's crust and atmosphere, source location and characterization, and inversion of atmospheric and shallow subsurface properties. This review article traces the seismoacoustic wavefield from source to receiver. Beginning at the source, we review the latest insights into the physics of natural and anthropogenic sources that have arisen from the analysis of seismoacoustic data. Next, a comparative review of 3‐D models of the atmosphere and solid Earth and the latest algorithms for modeling the propagation of mechanical waves through these media provides the framework for a discussion of the seismoacoustic path. The optimal measurement of seismic and acoustic waves, including a discussion of instrumentation, as well as of array configurations and regional networks, is then outlined. Finally, we focus on broad research applications where the analysis of seismoacoustic data is starting to yield important new results, such as in the field of nuclear explosion monitoring. This review is intended to provide a primer on the field of seismoacoustics for seismologists or acousticians, while also providing a more general review of what constraints seismoacoustics can uniquely provide for understanding geophysical phenomena.
Journal Article
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
2016
We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound.
Journal Article
Detection of the Large Surface Explosion Coupling Experiment by a Sparse Network of Balloon-Borne Infrasound Sensors
by
Bowman, Daniel C.
,
Ronac Giannone, Miro
,
Silber, Elizabeth A.
in
20th century
,
Acoustic waves
,
acoustic-gravity waves
2023
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought.
Journal Article