Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
201
result(s) for
"Initiation factor eIF-4G"
Sort by:
Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus
2018
Summary
Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059V1060V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV‐susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in‐frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV‐resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV‐resistant varieties.
Journal Article
Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery
2019
Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5′-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.
Journal Article
mTOR-dependent translation amplifies microglia priming in aging mice
by
Graelmann, Frederike
,
Antignano, Ignazio
,
Dumas, Anaelle A.
in
Aging
,
Aging - genetics
,
Aging - metabolism
2021
Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-κB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration.
Journal Article
Genome Editing of eIF4E1 in Tomato Confers Resistance to Pepper Mottle Virus
2020
Many of the recessive virus-resistance genes in plants encode eukaryotic translation initiation factors (eIFs), including eIF4E, eIF4G, and related proteins. Notably, eIF4E and its isoform eIF(iso)4E are pivotal for viral infection and act as recessive resistance genes against various potyviruses in a wide range of plants. In this study, we used Clustered Regularly Interspaced Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated targeted mutagenesis to test whether novel sequence-specific mutations at eIF4E1 in Solanum lycopersicum (tomato) cv. Micro-Tom could confer enhanced resistance to potyviruses. This approach produced heritable homozygous mutations in the transgene-free E1 generation. Sequence analysis of eIF4E1 from E0 transgenic plants expressing Cas9 and eIF4E-sgRNA transcripts identified chimeric deletions ranging from 11 to 43 bp. Genotype analysis of the eIF4E1 -edited lines in E0, E1, and E2 transgenic tomato plants showed that the mutations were transmitted to subsequent generations. When homozygous mutant lines were tested for resistance to potyviruses, they exhibited no resistance to tobacco etch virus (TEV). Notably, however, several mutant lines showed no accumulation of viral particles upon infection with pepper mottle virus (PepMoV). These results indicate that site-specific mutation of tomato eIF4E1 successfully conferred enhanced resistance to PepMoV. Thus, this study demonstrates the feasibility of the use of CRISPR/Cas9 approach to accelerate breeding for trait improvement in tomato plants.
Journal Article
Control of the eIF4E activity: structural insights and pharmacological implications
2021
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.
Journal Article
O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis
2019
Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked β-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.
Journal Article
FOXD1‐AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway
by
Shi, Min
,
Wu, Qiong
,
Meng, Wenying
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Antibodies
2021
Gastric cancer (GC) is a common gastrointestinal cancer with a high global mortality. Recent reports have suggested that long noncoding RNA (lncRNA) are implicated in multiple aspects of GC, including pathogenesis, progression, and therapeutic response. Herein, we investigated the function of FOXD1‐AS1 in GC progression and chemoresistance. Expression of FOXD1‐AS1 was low in normal stomach tissues but was upregulated in GC cell lines. Silencing of FOXD1‐AS1 impaired GC cell proliferation and motility in vitro, and repressed tumor growth and metastasis in vivo. Importantly, FOXD1‐AS1 upregulation increased the resistance of GC cells to cisplatin. Moreover, we found that FOXD1‐AS1 promoted FOXD1 protein translation through the eIF4G‐eIF4E‐eIF4A translational complex. We also demonstrated that FOXD1‐AS1 released eIF4E from phosphorylated 4E‐BP1 and thereby strengthened the interaction of eIF4E with eIF4G by activating the PI3K/AKT/mTOR pathway. Activation of the PI3K/AKT/mTOR pathway was due to the post‐transcriptional upregulation of PIK3CA, in turn induced by FOXD1‐AS1‐mediated sequestering of microRNA (miR)‐466. Furthermore, we verified that FOXD1‐AS1 facilitated GC progression and cisplatin resistance in a FOXD1‐dependent manner. In conclusion, FOXD1‐AS1 aggravates GC progression and chemoresistance by promoting FOXD1 translation via PIK3CA/PI3K/AKT/mTOR signaling. These findings highlight a novel target for treatment of patients GC, particularly patients with cisplatin resistance.
Cytoplasmic FOXD1‐AS1 sponges miR‐466 to increase PIK3CA expression, so as to activate the PI3K/AKT/mTOR signaling pathway and induce 4E‐BP1 phosphorylation, therefore leading to enhanced interaction of eIF4E with eIF4G, and resulting in boosted protein levels of FOXD1, which finally facilitate GC cell growth, metastasis, and chemoresistance.
Journal Article
Global mRNA selection mechanisms for translation initiation
by
Castelli, Lydia M
,
Sims, Paul F G
,
Kershaw, Christopher J
in
Cluster Analysis
,
Efficiency
,
Eukaryotic Initiation Factors - metabolism
2015
The selection and regulation of individual mRNAs for translation initiation from a competing pool of mRNA are poorly understood processes. The closed loop complex, comprising eIF4E, eIF4G and PABP, and its regulation by 4E-BPs are perceived to be key players. Using RIP-seq, we aimed to evaluate the role in gene regulation of the closed loop complex and 4E-BP regulation across the entire yeast transcriptome.
We find that there are distinct populations of mRNAs with coherent properties: one mRNA pool contains many ribosomal protein mRNAs and is enriched specifically with all of the closed loop translation initiation components. This class likely represents mRNAs that rely heavily on the closed loop complex for protein synthesis. Other heavily translated mRNAs are apparently under-represented with most closed loop components except Pab1p. Combined with data showing a close correlation between Pab1p interaction and levels of translation, these data suggest that Pab1p is important for the translation of these mRNAs in a closed loop independent manner. We also identify a translational regulatory mechanism for the 4E-BPs; these appear to self-regulate by inhibiting translation initiation of their own mRNAs.
Overall, we show that mRNA selection for translation initiation is not as uniformly regimented as previously anticipated. Components of the closed loop complex are highly relevant for many mRNAs, but some heavily translated mRNAs interact poorly with this machinery. Therefore, alternative, possibly Pab1p-dependent mechanisms likely exist to load ribosomes effectively onto mRNAs. Finally, these studies identify and characterize a complex self-regulatory circuit for the yeast 4E-BPs.
Journal Article
A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells
2021
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4
+
T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5’ noncoding regions. Silencing DAP5 in isolated human naive CD4
+
T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
The differentiation of naive T cells to immune suppressing induced regulatory T (iTreg) cells requires TGF-beta-1 and downregulation of mTORC1 activity, which inhibits mRNA translation. Here the authors show that iTreg cell differentiation uses an alternate mRNA translation mechanism involving translation factors DAP5 and eIF3d.
Journal Article
Structural studies of the eIF4E–VPg complex reveal a direct competition for capped RNA
by
Trahan, Christian
,
Borden, Katherine L. B.
,
Rahardjo, Amanda K.
in
Binding Sites
,
Binding, Competitive
,
Biochemistry
2019
Viruses have transformed our understanding of mammalian RNA processing, including facilitating the discovery of the methyl-7-guanosine (m⁷G) cap on the 5′ end of RNAs. The m⁷G cap is required for RNAs to bind the eukaryotic translation initiation factor eIF4E and associate with the translation machinery across plant and animal kingdoms. The potyvirus-derived viral genome-linked protein (VPg) is covalently bound to the 5′ end of viral genomic RNA (gRNA) and associates with host eIF4E for successful infection. Divergent models to explain these observations proposed either an unknown mode of eIF4E engagement or a competition of VPg for the m⁷G cap-binding site. To dissect these possibilities, we resolved the structure of VPg, revealing a previously unknown 3-dimensional (3D) fold, and characterized the VPg–eIF4E complex using NMR and biophysical techniques. VPg directly bound the cap-binding site of eIF4E and competed for m⁷G cap analog binding. In human cells, VPg inhibited eIF4E-dependent RNA export, translation, and oncogenic transformation. Moreover, VPg formed trimeric complexes with eIF4E–eIF4G, eIF4E bound VPg–luciferase RNA conjugates, and these VPg–RNA conjugates were templates for translation. Informatic analyses revealed structural similarities between VPg and the human kinesin EG5. Consistently, EG5 directly bound eIF4E in a similar manner to VPg, demonstrating that this form of engagement is relevant beyond potyviruses. In all, we revealed an unprecedented modality for control and engagement of eIF4E and show that VPg–RNA conjugates functionally engage eIF4E. As such, potyvirus VPg provides a unique model system to interrogate eIF4E.
Journal Article