Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,484
result(s) for
"Injectors"
Sort by:
The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
2017
The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now-when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.
Journal Article
Research on transient characteristics of the pintle injector
2025
In order to analyze the transient performance of start-up for the pintle injector, the equations were derived using mass and momentum conservation, ideal gas functions and many complex resistances. Based on the MFC framework, simulation software has been compiled, which can realize multi-parameter input and visualization output. To investigate the numerical method, both simulations and experimental tests were carried out on a specific pintle injector. The simulation results agree well with the test data, and the response time and test deviation of start-up is 3.535%, respectively, which confirms the validity of the model. The calculation examples show that the model is available and practical.
Journal Article
An Efficient Surrogate Model for Emulation and Physics Extraction of Large Eddy Simulations
by
Chang, Yu-Hung
,
Sung, Chih-Li
,
Yang, Vigor
in
Applications and Case Studies
,
Computation
,
Computational fluid dynamics
2018
In the quest for advanced propulsion and power-generation systems, high-fidelity simulations are too computationally expensive to survey the desired design space, and a new design methodology is needed that combines engineering physics, computer simulations, and statistical modeling. In this article, we propose a new surrogate model that provides efficient prediction and uncertainty quantification of turbulent flows in swirl injectors with varying geometries, devices commonly used in many engineering applications. The novelty of the proposed method lies in the incorporation of known physical properties of the fluid flow as simplifying assumptions for the statistical model. In view of the massive simulation data at hand, which is on the order of hundreds of gigabytes, these assumptions allow for accurate flow predictions in around an hour of computation time. To contrast, existing flow emulators which forgo such simplifications may require more computation time for training and prediction than is needed for conducting the simulation itself. Moreover, by accounting for coupling mechanisms between flow variables, the proposed model can jointly reduce prediction uncertainty and extract useful flow physics, which can then be used to guide further investigations. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Journal Article
Numerical analysis of the sand hydro-abrasion of a Pelton turbine injector
2024
Pelton turbines have great application prospects in the exploitation of high-head hydraulic resources. However, sediment abrasion within its components is the major challenge. In this paper, Euler-Lagrangian method is used to simulate the flow process of the sediment particles in Pelton turbines injector numerically. The hydraulic characteristics of the three-phase flow, the behaviour of the sediment particles and the abrasion distribution are also analysed in detail. Calculation result shows that the predicted motion characteristics of the particles are in good agreement with theoretical model, and the predicted abrasion distribution also matches well with the measured results.
Journal Article
Xilinx control circuit made to highlight injected fuel flow
The paper presents a control circuit made in Xilinx and which allows the adjustment of the frequency and the duty cycle of the control signal of an injector. The control circuit contains an oscillator and a selection circuit that provide specific commands to a counter. The oscillator that provides the clock frequency of a counting circuit uses the Nexis 4 DDR module’s own frequency. This is to be divided to the desired value by means of a divider implemented soft which makes changing the frequency easy. The signal obtained at its output commands a counter at which the maximum value of numbers is changed by a circuit selection. Thus, the variable duty cycle of the output signal of the development board is obtained, which is amplified both in voltage and in current, for compatibility with the injector parameters. The paper presents waveform obtained when resistive load operation as well as quantities of fuel injected in a given time interval.
Journal Article
Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry
by
Traver, Michael
,
Cleary, David J.
,
Matusik, Katarzyna E.
in
Axis movements
,
Computational fluid dynamics
,
Computer applications
2018
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness. A robust and previously validated computational setup from the authors’ research group using a commercial computational fluid dynamics (CFD) code has been adapted for the eight-hole heavy-duty common-rail diesel injector used for the measurements. The simulation results obtained using the x-ray-scanned geometry have been validated against available experimental data of mass flow rate at the nozzle exit. The fuel mass flow rate has then been analyzed at three different injection pressures that cover the conditions at which the injector typically operates during normal engine operation. Finally, the average off-axis motion of the needle has been perturbed (based on the variability found in the experimental measurements) to generate three new cases that present different amplitude and phasing of the radial displacement with respect to the baseline average motion. This revealed the effects of off-axis motion on shot-to-shot and orifice-to-orifice variations.
Journal Article
Numerical study on the supersonic gas-solid two-phase injection mechanism of needle-free syringe
2025
Supersonic gas-solid injection technology finds extensive use in drug particle delivery systems. However, the combined impact of particle diameter and mass flow rate on the delivery efficiency remain insufficiently explored. Within the Euler-Lagrange framework, this study utilizes the discrete phase method (DPM) for the numerical simulation of supersonic gas-particle flow in a needle-free injector. After validating the model’s accuracy with experiment results, further investigations were conducted into the influences of particle size and mass flow rate on particle behavior and flow field properties. The results indicate that the impact of larger particles on the compressible structure is stronger, while higher mass flow rate absorbs greater energy from the gas phase, reducing the gas expansion capacity, which results in lower velocity, Mach number, and higher temperature. The jet core zone is approximately x/X = 0.3 in length. Outside core zone, the gas velocity rapidly decays and temperature rises sharply. Within the jet core zone, drug particles are accelerated and cooled, while beyond core zone, they decelerate and heat up. The strongest inter-phase interactions occur primarily in the nozzle expansion area and the jet core zone. Smaller particles reach maximum velocity upstream. This implies that in designing needle-free injectors, the nozzle-to-skin distance must match the drug particle diameter to achieve maximum penetration effectiveness. Furthermore, the particle temperature decreases with smaller sizes. As the particle diameter rises from 10 μm to 100 μm, the minimum temperatures of the particles are 145 K and 264 K, respectively, indicating the need to match the particle diameter with the minimum temperature at which the drug particles remain effective. Additionally, higher mass flow rate doses reduce injection velocity and penetration ability, necessitating the rational control of the administered dose range. These results offer significant theoretical guidance for the design and improvement of needle-free injection.
Journal Article
Effect of Injector Type and Intake Boosting on Combustion, Performance, and Emission Characteristics of a Spray-Guided Gasoline Direct Injection Engine—A Computational Fluid Dynamics Study
by
Kumar, Rahul
,
Bhaduri, Sreetam
,
Mallikarjuna, J.M.
in
Combustion
,
Combustion Phasing
,
Computational fluid dynamics
2024
In general, GDI engines operate with stratified mixtures at part-load conditions enabling increased fuel economy with high power output, however, with a compensation of increased soot emissions at part-load conditions. This is mainly due to improper in-cylinder mixing of air and fuel leading to a sharp decrease in gradient of reactant destruction term and heat release rate (HRR), resulting in flame quenching. The type of fuel injector and engine operating conditions play a significant role in the in-cylinder mixture formation. Therefore, in this study, a CFD analysis is utilized to compare the effect of stratified mixture combustion with multi-hole solid-cone and hollow-cone injectors on the performance and emission characteristics of a spray-guided GDI engine.
The equivalence ratio (ϕ) from 0.6 to 0.8 with the constant engine speed of 2000 rev/min is considered. For both injectors, the fuel injection pressure of 200 bar is used with 60° spray-cone angles. For lean boosting conditions, intake pressures of 1 bar, 1.2 bar, and 1.4 bar are maintained for 0.8 equivalence ratio cases for both injectors. Results from the CFD analysis are compared with those of the available experimental results with good agreement. Analyzing the results, naturally aspirated and intake boosting conditions for ϕ of 0.8, mixture distribution and flame propagation for the multi-hole solid injector are better than hollow-cone injector. Also, for the ϕ of 0.8, naturally aspirated mode, the soot emissions by the hollow-cone injector are higher by about 90%, and the NOₓ emissions are higher by about 19% compared to that of the multi-hole solid-cone injector. Under boosted intake pressure conditions, for the hollow-cone injector, the soot emissions are higher by about 97%–99%, and NOₓ emissions are higher by about 7%–6% compared to the multi-hole solidcone injector. Also, HC and CO emissions are considerably lower for the hollow-cone injector than that of the multi-hole solid-cone injector.
Journal Article
Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors
2022
Oral administration provides a simple and non-invasive approach for drug delivery. However, due to poor absorption and swift enzymatic degradation in the gastrointestinal tract, a wide range of molecules must be parenterally injected to attain required doses and pharmacokinetics. Here we present an orally dosed liquid auto-injector capable of delivering up to 4-mg doses of a bioavailable drug with the rapid pharmacokinetics of an injection, reaching an absolute bioavailability of up to 80% and a maximum plasma drug concentration within 30 min after dosing. This approach improves dosing efficiencies and pharmacokinetics an order of magnitude over our previously designed injector capsules and up to two orders of magnitude over clinically available and preclinical chemical permeation enhancement technologies. We administered the capsules to swine for delivery of clinically relevant doses of four commonly injected medications, including adalimumab, a GLP-1 analog, recombinant human insulin and epinephrine. These multi-day dosing experiments and oral administration in awake animal models support the translational potential of the system.
Biologics are delivered by a pill that pricks the stomach wall.
Journal Article
Overview of the design of the ITER heating neutral beam injectors
2017
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H− and D− remains acceptable ( 56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: negative ions are harder to create so that they can be extracted and accelerated from the ion source; electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; negative ions are easily lost by collisions with the background gas in the accelerator; electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
Journal Article