Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
454 result(s) for "Insect Control - instrumentation"
Sort by:
Comparison of different traps and attractants in 3 food processing facilities in Greece on the capture of stored product insects
Certain lures are marketed toward particular pests or classes of pests, while others might be multi-species lures. Investigative aims for this study included both which trap was most sensitive and whether different combinations of traps and attractants were delivering novel information about the stored product insect community. Comparisons were made for all combinations of 3 commercial traps and 4 different attractants plus an untreated control on the capture of stored-product insects for 2 consecutive years in 3 food processing facilities in Central Greece. The traps used in the experiments were Dome Trap (Trécé Inc., USA), Wall Trap (Trécé) and Box Trap (Insects Limited, Ltd., USA). The attractants that were evaluated were 0.13 g of (i) PantryPatrol gel (Insects Limited), (ii) Storgard kairomone food attractant oil (Trécé), (iii) wheat germ (Honeyville, USA), and (iv) Dermestid tablet attractant (Insects Limited). The traps were inspected approximately every 15 days and rotated. A total of 34,000+ individuals were captured belonging to 26 families and at least 48 species. The results indicated that Indian meal moth, Plodia interpunctella (Hübner), red flour beetle, Tribolium castaneum (Herbst), and cigarette beetle, Lasioderma serricorne (F.) were the most abundant. Although there were noticeable differences among the different traps and attractants for specific species, all combinations provided similar information on population dynamics. Generally, Dome traps baited with either the oil or the gel, were found to be the most sensitive. The results of the present study demonstrate the importance of long-term trapping protocols, as a keystone in IPM-based control strategies in food processing facilities. Graphical Abstract
Invasive Insects: Management Methods Explored
Invasive insect species can act as a plague across the globe, capable of vast expansion and rapid, proliferate reproduction. The spread of pathogens of serious diseases such as malaria and Zika virus and damages to agricultural crops number some of the afflictions invasive insects provide to humans alone. Additionally, an escape from predators can fail to keep invasive insects in check, providing potential threats such as extra resource competition to native species when insects invade. A variety of methods are employed to combat these invasive species, each with their own varying levels of success. Here, we explore the more traditional methods of invasive insect pest control, such as pesticides and biological control. In lieu of several unintended consequences resulting from such practices, we suggest some should be abandoned. We evaluate the potential of new techniques, in particular, those with a genetic component, regarding the costs, benefits and possible consequences of implementing them. And finally, we consider which techniques should be the focus of future research, if we truly wish to manage or even eradicate invasive insects in their introduced lands.
Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of human African trypanosomiasis in the Democratic Republic of the Congo
Over the past 20 years there has been a >95% reduction in the number of Gambian Human African trypanosomiasis (g-HAT) cases reported globally, largely as a result of large-scale active screening and treatment programmes. There are however still foci where the disease persists, particularly in parts of the Democratic Republic of the Congo (DRC). Additional control efforts such as tsetse control using Tiny Targets may therefore be required to achieve g-HAT elimination goals. The purpose of this study was to evaluate the impact of Tiny Targets within DRC. In 2015-2017, pre- and post-intervention tsetse abundance data were collected from 1,234 locations across three neighbouring Health Zones (Yasa Bonga, Mosango, Masi Manimba). Remotely sensed dry season data were combined with pre-intervention tsetse presence/absence data from 332 locations within a species distribution modelling framework to produce a habitat suitability map. The impact of Tiny Targets on the tsetse population was then evaluated by fitting a generalised linear mixed model to the relative fly abundance data collected from 889 post-intervention monitoring sites within Yasa Bonga, with habitat suitability, proximity to the intervention and intervention duration as covariates. Immediately following the introduction of the intervention, we observe a dramatic reduction in fly catches by > 85% (pre-intervention: 0.78 flies/trap/day, 95% CI 0.676-0.900; 3 month post-intervention: 0.11 flies/trap/day, 95% CI 0.070-0.153) which is sustained throughout the study period. Declines in catches were negatively associated with proximity to Tiny Targets, and while habitat suitability is positively associated with abundance its influence is reduced in the presence of the intervention. This study adds to the body of evidence demonstrating the impact of Tiny Targets on tsetse across a range of ecological settings, and further characterises the factors which modify its impact. The habitat suitability maps have the potential to guide the expansion of tsetse control activities in this area.
Conceptualization, design, and construction of a novel insect mass trapping device: the USDA Biomass Harvest Trap (USDA-BHT)
The use of insects as animal feed has the potential to be a green revolution for animal agriculture as insects are a rich source of high-quality protein. Insect farming must overcome challenges such as product affordability and scalability before it can be widely incorporated as animal feed. An alternative is to harvest insect pests from the environment using mass trapping devices and use them as animal feed. For example, intensive agricultural environments generate large quantities of pestiferous insects and with the right harvest technologies, these insects can be used as a protein supplement in traditional animal daily rations. Most insect trapping devices are limited by the biomass they can collect. In that context, and with the goal of using wild collected insects as animal feed, the United States Department of Agriculture-Biomass Harvest Trap (USDA-BHT) was designed and built. The USDA-BHT is a valuable mass trapping device developed to efficiently attract, harvest, and store flying insects from naturally abundant agricultural settings. The trap offers a modular design with adjustable capabilities, and it is an inexpensive device that can easily be built with commonly available parts and tools. The USDA-BHT is also user-friendly and has customizable attractants to target various pest species.
Yolo-pest: an optimized YoloV8x for detection of small insect pests using smart traps
Fruit flies and fall-armyworm are one of the major insect pest that adversely affect fruit and crops, whereas fall-armyworm is also a highly destructive pest in maize crop but also damage other economically important field crops and vegetables. Adults of both pests can fly, making it hard to monitor them in the field. This study focuses on fine-tuning the YoloV8x model for automated monitoring and identifying insect pests, like fruit flies and fall-armyworms, in open fields and closed environments using IoT-based Smart Traps. The conventional techniques for monitoring of these insect pests involve pheromone attractants and sticky traps that require regular farm visits. We developed an IoT-based device, called Smart Trap, that attracts insect pests with pheromones and captures real-time images using cameras and IoT sensors. Its main objective is automated pest monitoring in fields or indoor grain storage houses. Images captured by smart traps are transmitted to the server, where Yolo-pest, a fine-tuned YoloV8x model with customized hyperparameters performs in real time for object detection. The performance of the smart trap was evaluated in a mango orchard (Fruit Flies) and maize field (fall Armyworm) in an arid climate, achieving a 94% average detection accuracy. The validation process on grayscale and coloured images further confirmed the model’s consistent accuracy in identifying insect pests in maze crop and mango orchards. The mobile application also enhances the practical utility as having a user-friendly interface for real time identification of insect pest. Farmers can easily acces the information and data remotely that empowering them for efficient pest maangment.
Development of an operational trap for collection, killing, and preservation of triatomines (Hemiptera: Reduviidae): the kissing bug kill trap
Surveillance of triatomines or kissing bugs (Hemiptera: Reduviidae: Triatominae), the insect vectors of Trypanosoma cruzi, a Chagas disease agent, is hindered by the lack of an effective trap.To develop a kissing bug trap, we made iterative improvements over 3 years on a basic design resulting in 7 trap prototypes deployed across field sites in Texas, United States and Northern Mexico, yielding the capture of 325 triatomines of 4 species (Triatoma gerstaeckeri [Stål], T. sanguisuga [LeConte], T. neotomae [Neiva], and T. rubida [Uhler]). We began in 2019 with vertical transparent tarpaulin panel traps illuminated with artificial light powered by AC current, which were successful in autonomous trapping of flying triatomines, but were expensive, labor-intensive, and fragile. In 2020, we switched to white LED lights powered by a solar cell. We tested a scaled-down version of the vertical panel traps, a commercial cross-vane trap, and a multiple-funnel trap. The multiple-funnel traps captured 2.6× more kissing bugs per trap-day than cross-vane traps and approached the performance of the vertical panel traps in number of triatomines captured, number of triatomines per trap-day and triatomines per arthropod bycatch. Multiple-funnel traps required the least labor, were more durable, and had the highest triatomines per day per cost. Propylene glycol in the collection cups effectively preserved captured triatomines allowing for molecular detection of T. cruzi. The trapping experiments established dispersal patterns for the captured species. We conclude that multiple-funnel traps with solar-powered LED lights should be considered for adoption as surveillance and potentially mass-trapping management tools for triatomines.
A review of Musca sorbens (Diptera: Muscidae) and Musca domestica behavior and responses to chemical and visual cues
Musca flies (Diptera: Muscidae) have been found culpable in the mechanical transmission of several infectious agents, including viruses, bacteria, protozoans, and helminths, particularly in low-income settings in tropical regions. In large numbers, these flies can negatively impact the health of communities and their livestock through the transmission of pathogens. In some parts of the world, Musca sorbens is of particular importance because it has been linked with the transmission of trachoma, a leading cause of preventable and irreversible blindness or visual impairment caused by Chlamydia trachomatis, but the contribution these flies make to trachoma transmission has not been quantified and even less is known for other pathogens. Current tools for control and monitoring of house flies remain fairly rudimentary and have focused on the use of environmental management, insecticides, traps, and sticky papers. Given that the behaviors of flies are triggered by chemical cues from their environment, monitoring approaches may be improved by focusing on those activities that are associated with nuisance behaviors or with potential pathogen transmission, and there are opportunities to improve fly control by exploiting behaviors toward semiochemicals that act as attractants or repellents. We review current knowledge on the odor and visual cues that affect the behavior of M. sorbens and Musca domestica, with the aim of better understanding how these can be exploited to support disease monitoring and guide the development of more effective control strategies.
Improved capture of Drosophila suzukii by a trap baited with two attractants in the same device
The improvement of trap-lure combinations is an important part of integrated pest management programs that involve monitoring pests for timely insecticide applications, or for their use in control strategies such as mass trapping or bait stations. In this study improvements in the capture of Drosophila suzukii were not observed following the inclusion of different color stimuli with respect to a red-black stripe cup trap. This red-black stripe trap with a hemispherical dome-shaped lid had a significantly improved physical retention of flies compared to traps fitted with a flat lid. Retention was further improved when an additional tube device, which could be baited with a supplemental attractant, was introduced through the dome-shaped lid. Under laboratory conditions, this trap, in which apple cider vinegar + 10% ethanol was present as the drowning solution and the additional tube device was baited with a fermenting mixture of sugar and yeast, was significantly more effective in catching D. suzukii flies than other conventional attractants or a commercial lure. The capture rate of this trap-lure combination remained higher than that of a commercial lure, even after 20 days of use under laboratory conditions. In a guava orchard this trap was 15-fold more effective in catching D. suzukii flies than similar traps baited with apple cider vinegar alone, 4 to 7 fold more effective than similar traps baited with a commercial lure, and 1.7-fold more effective than a fermenting mixture of yeasts and wheat flour. In commercial blackberry orchards, this trap was 6-fold more effective in trapping D. suzukii flies than the clear trap baited with apple cider vinegar used by growers. The efficacy of this trap presents a promising line of future research for monitoring and control of D. suzukii and likely other drosophilid pests.
Lure Monitoring for Mediterranean Fruit Fly Traps Using Air Quality Sensors
Effective pest population monitoring is crucial in precision agriculture, which integrates various technologies and data analysis techniques for enhanced decision-making. This study introduces a novel approach for monitoring lures in traps targeting the Mediterranean fruit fly, utilizing air quality sensors to detect total volatile organic compounds (TVOC) and equivalent carbon dioxide (eCO2). Our results indicate that air quality sensors, specifically the SGP30 and ENS160 models, can reliably detect the presence of lures, reducing the need for frequent physical trap inspections and associated maintenance costs. The ENS160 sensor demonstrated superior performance, with stable detection capabilities at a predefined distance from the lure, suggesting its potential for integration into smart trap designs. This is the first study to apply TVOC and eCO2 sensors in this context, paving the way for more efficient and cost-effective pest monitoring solutions in smart agriculture environments.
Bed Bugs: Prevalence in Low-Income Communities, Resident's Reactions, and Implementation of a Low-Cost Inspection Protocol
We examined bed bug prevalence in 2,372 low-income apartments within 43 buildings in four New Jersey cities using a combination of resident interviews, brief visual inspections, and monitoring with Climbup Insect Interceptors. Infestation rates ranged from 3.8 to 29.5% among the buildings, with an overall infestation rate of 12.3%. Within each apartment, the bed area trapped significantly more bed bugs per trap than the sofa (or upholstered chair) area. African American residents had a proportionally higher number of bed bug infestations than white residents. Women were more likely to report bed bug bite symptoms than men. Only 68% of the residents who experienced bed bug infestations reported symptoms after being bitten (n = 475). Among those with self-reported symptoms (n = 319), the frequency of the reported symptoms was: pain 90%, itchiness 20%, welts 13%, and insomnia 8%. Fifty-nine percent of the residents (n = 539) who experienced bed bug infestations applied insecticides to control bed bugs. Climbup interceptors detected 89 ± 1% and brief visual inspections detected 72 ± 3% of the infestations. Only two out of 291 infestations were not detected by brief visual inspection or interceptors. Assuming US$50 per hour labor rate, the average per apartment cost for the building-wide bed bug monitoring protocol was US$12 per apartment. Forty-nine percent of the infestations detected by the protocol were in apartments whose residents were unaware of the bed bug activity.