Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,452 result(s) for "Insecta - physiology"
Sort by:
Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects
Polyneoptera represents one of the major lineages of winged insects, comprising around 40,000 extant species in 10 traditional orders, including grasshoppers, roaches, and stoneflies. Many important aspects of polyneopteran evolution, such as their phylogenetic relationships, changes in their external appearance, their habitat preferences, and social behavior, are unresolved and are a major enigma in entomology. These ambiguities also have direct consequences for our understanding of the evolution of winged insects in general; for example, with respect to the ancestral habitats of adults and juveniles. We addressed these issues with a large-scale phylogenomic analysis and used the reconstructed phylogenetic relationships to trace the evolution of 112 characters associated with the external appearance and the lifestyle of winged insects. Our inferences suggest that the last common ancestors of Polyneoptera and of the winged insects were terrestrial throughout their lives, implying that wings did not evolve in an aquatic environment. The appearance of the first polyneopteran insect was mainly characterized by ancestral traits such as long segmented abdominal appendages and biting mouthparts held below the head capsule. This ancestor lived in association with the ground, which led to various specializations including hardened forewings and unique tarsal attachment structures. However, within Polyneoptera, several groups switched separately to a life on plants. In contrast to a previous hypothesis, we found that social behavior was not part of the polyneopteran ground plan. In other traits, such as the biting mouthparts, Polyneoptera shows a high degree of evolutionary conservatism unique among the major lineages of winged insects.
global distribution of diet breadth in insect herbivores
Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization. Significance Dietary specialization determines an organism’s resource base as well as impacts on host or prey species. There are important basic and applied reasons to ask why some animals have narrow diets and others are more generalized, and if different regions of the Earth support more specialized interactions. We investigated site-specific host records for more than 7,500 species of insect herbivores. Although host specialists predominate, the proportion of specialists is affected by the diversity of hosts and shifts globally, supporting predictions of more exclusive tropical interactions. These results not only affect our understanding of the ecology of food webs, but also have implications for how they respond to environmental change, as well as for ecosystem management and restoration.
Urban areas as hotspots for bees and pollination but not a panacea for all insects
Urbanisation is an important global driver of biodiversity change, negatively impacting some species groups whilst providing opportunities for others. Yet its impact on ecosystem services is poorly investigated. Here, using a replicated experimental design, we test how Central European cities impact flying insects and the ecosystem service of pollination. City sites have lower insect species richness, particularly of Diptera and Lepidoptera, than neighbouring rural sites. In contrast, Hymenoptera, especially bees, show higher species richness and flower visitation rates in cities, where our experimentally derived measure of pollination is correspondingly higher. As well as revealing facets of biodiversity (e.g. phylogenetic diversity) that correlate well with pollination, we also find that ecotones in insect-friendly green cover surrounding both urban and rural sites boost pollination. Appropriately managed cities could enhance the conservation of Hymenoptera and thereby act as hotspots for pollination services that bees provide to wild flowers and crops grown in urban settings. Pollinators can persist in urban areas despite little natural habitat. Here the authors compare insect pollinators and pollination inside and outside of German cities, showing that urban areas have high diversity of bees but not other insects, and high pollination provisioning, relative to rural sites.
Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection
Plants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs. The biosynthesis of these metabolites is regulated by the interplay of signaling molecules comprising phytohormones. Plant volatile metabolites are released upon herbivore attack and are capable of directly inducing or priming hormonal defense signaling pathways. Secondary metabolites enable plants to quickly detect herbivore attacks and respond in a timely way in a rapidly changing scenario of pest and environment. Several studies have suggested that the potential for adaptation and/or resistance by insect herbivores to secondary metabolites is limited. These metabolites cause direct toxicity to insect pests, stimulate antixenosis mechanisms in plants to insect herbivores, and, by recruiting herbivore natural enemies, indirectly protect the plants. Herbivores adapt to secondary metabolites by the up/down regulation of sensory genes, and sequestration or detoxification of toxic metabolites. PSMs modulate multi-trophic interactions involving host plants, herbivores, natural enemies and pollinators. Although the role of secondary metabolites in plant-pollinator interplay has been little explored, several reports suggest that both plants and pollinators are mutually benefited. Molecular insights into the regulatory proteins and genes involved in the biosynthesis of secondary metabolites will pave the way for the metabolic engineering of biosynthetic pathway intermediates for improving plant tolerance to herbivores. This review throws light on the role of PSMs in modulating multi-trophic interactions, contributing to the knowledge of plant-herbivore interactions to enable their management in an eco-friendly and sustainable manner.
Global effects of land-use intensity on local pollinator biodiversity
Pollinating species are in decline globally, with land use an important driver. However, most of the evidence on which these claims are made is patchy, based on studies with low taxonomic and geographic representativeness. Here, we model the effect of land-use type and intensity on global pollinator biodiversity, using a local-scale database covering 303 studies, 12,170 sites, and 4502 pollinating species. Relative to a primary vegetation baseline, we show that low levels of intensity can have beneficial effects on pollinator biodiversity. Within most anthropogenic land-use types however, increasing intensity is associated with significant reductions, particularly in urban (43% richness and 62% abundance reduction compared to the least intensive urban sites), and pasture (75% abundance reduction) areas. We further show that on cropland, the strongly negative response to intensity is restricted to tropical areas, and that the direction and magnitude of response differs among taxonomic groups. Our findings confirm widespread effects of land-use intensity on pollinators, most significantly in the tropics, where land use is predicted to change rapidly. Anthropogenic losses of animal pollinators threaten ecosystem functioning. Here the authors report a global analysis showing geographically varied yet widespread declines of pollinator diversity and abundance with land use intensification, particularly in tropical biomes.
Physiology, ecology and industrial applications of aroma formation in yeast
Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. This review explores the biochemical pathways leading to production of a wide array of aroma compounds, the various industrial applications that have been developed around use of aroma compounds, as well as the newly uncovered physiological and ecological roles the various compounds may play.
Recent progress on the interaction between insects and Bacillus thuringiensis crops
Extensive use of chemical pesticides poses a great threat to the environment and food safety. The discovery of Bacillus thuringiensis (Bt) toxins with effective insecticidal activity against pests and the development of transgenic technology of plants opened a new era of pest control. Transgenic Bt crops, including maize, cotton and soya bean, have now been produced and commercialized to protect against about 30 major coleopteran and lepidopteran pests, greatly benefiting the environment and the economy. However, with the long-term cultivation of Bt crops, some target pests have gradually developed resistance. Numerous studies have indicated that mutations in genes for toxins activation, toxin-binding and insect immunization are important sources in Bt resistance. An in-depth exploration of the corresponding Bt-resistance mechanisms will aid in the design of new strategies to prevent and control pests. Future research will focus on Bt crops expressing new genes and multiple genes to control a broader range of pests as part of an integrated pest management programme. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.
Access to the odor world: olfactory receptors and their role for signal transduction in insects
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains
Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967) Am Nat 101:233–249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.
Non-bee insects are important contributors to global crop pollination
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.