Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
928 result(s) for "Integrated circuits, Very large scale integration"
Sort by:
VLSI Test Principles and Architectures - Design for Testability
This book is a comprehensive guide to new design for testability (DFT) methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. Key features include up-to-date coverage of design for testability, coverage of industry practices commonly found in commercial DFT tools but not discussed in other books, and numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures. Practitioners/Researchers in VLSI design and testing; design or test engineers, as well as research institutes will benefit from this book. This book is also appropriate for undergraduate and graduate-level courses in electronic testing, digital systems testing, digital logic test and simulation, and VLSI design.
System-on-Chip Test Architectures - Nanometer Design for Testability
Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI testing and design-for-testability (DFT) techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly system-on-chip test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs.
Broadband circuits for optical fiber communication
An expert guide to the new and emerging field of broadband circuits for optical fiber communication This exciting publication makes it easy for readers to enter into and deepen their knowledge of the new and emerging field of broadband circuits for optical fiber communication. The author's selection and organization of material have been developed, tested, and refined from his many industry courses and seminars. Five types of broadband circuits are discussed in detail: * Transimpedance amplifiers * Limiting amplifiers * Automatic gain control (AGC) amplifiers * Lasers drivers * Modulator drivers Essential background on optical fiber, photodetectors, lasers, modulators, and receiver theory is presented to help readers understand the system environment in which these broadband circuits operate. For each circuit type, the main specifications and their impact on system performance are explained and illustrated with numerical values. Next, the circuit concepts are discussed and illustrated with practical implementations. A broad range of circuits in MESFET, HFET, BJT, HBT, BiCMOS, and CMOS technologies is covered. Emphasis is on circuits for digital, continuous-mode transmission in the 2.5 to 40 Gb/s range, typically used in SONET, SDH, and Gigabit Ethernet applications. Burst-mode circuits for passive optical networks (PON) and analog circuits for hybrid fiber-coax (HFC) cable-TV applications also are discussed. Learning aids are provided throughout the text to help readers grasp and apply difficult concepts and techniques, including: * Chapter summaries that highlight the key points * Problem-and-answer sections to help readers apply their new knowledge * Research directions that point to exciting new technological breakthroughs on the horizon * Product examples that show the performance of actual broadband circuits * Appendices that cover eye diagrams, differential circuits, S parameters, transistors, and technologies * A bibliography that leads readers to more complete and in-depth treatment of specialized topics This is a superior learning tool for upper-level undergraduates and graduate-level students in circuit design and optical fiber communication. Unlike other texts that concentrate on analog circuits in general or mostly on optics, this text provides balanced coverage of electronic, optic, and system issues. Professionals in the fiber optic industry will find it an excellent reference, incorporating the latest technology and discoveries in the industry.
Mosfet modeling for VLSI simulation
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations.
Introduction to VLSI Systems
This text covers all the basics of VLSI fabrication and low-level system design. Comprehensive and well-written, it is suitable for courses in VLSI system design and digital integrated circuit analysis and design. Taking a bottom-up approach, the book starts with an overview of logic design principles, before tackling design issues and fabrication. The book includes numerous worked examples and homework problems. It also offers two sets of PowerPoint slides and an instructor's manual upon qualified course adoption.
PSPICE and MATLAB for electronics : an integrated approach
Used collectively, PSPICE and MATLAB®are unsurpassed for circuit modeling and data analysis. PSPICE can perform DC, AC, transient, Fourier, temperature, and Monte Carlo analysis of electronic circuits with device models and subsystem subcircuits. MATLAB can then carry out calculations of device parameters, curve fitting, numerical integration, numerical differentiation, statistical analysis, and two- and three-dimensional plots. PSPICE and MATLAB®for Electronics: An Integrated Approach, Second Editionillustrates how to use the strong features of PSPICE and the powerful functions of MATLAB for electronic circuit analysis. After introducing the basic commands and advanced features of PSPICE as well as ORCAD schematics, the author discusses MATLAB fundamentals and functions. He then describes applications of PSPICE and MATLAB for problem solving. Applications covered include diodes, operational amplifiers, and transistor circuits. New to the Second Edition Updated MATLAB topics Schematic capture and text-based PSPICE netlists in several chapters New chapter on PSPICE simulation using the ORCAD schematic capture program New examples and problems, along with a revised bibliography in each chapter This second edition continues to provide anintroduction to PSPICE and a simple, hands-on overview of MATLAB. It also demonstrates the combined power of PSPICE and MATLAB for solving electronics problems. The book encourages readers to explore the characteristics of semiconductor devices using PSPICE and MATLAB and apply the two software packages for analyzing electronic circuits and systems.
VLSI Circuits for Biomedical Applications
VLSI (very large scale integration) is the process of creating integrated circuits by combining thousands of transistor based circuits into a single chip. Written by top-notch international experts in industry and academia, this groundbreaking resource presents a comprehensive, state-of-the-art overview of VLSI circuit design for a wide range of applications in biology and medicine. Supported with over 280 illustrations and over 160 equations, the book offers cutting-edge guidance on designing integrated circuits for wireless biosensing, body implants, biosensing interfaces, and molecular biology. You discover innovative design techniques and novel materials to help you achieve higher levels circuit and system performance. This invaluable volume is essential reading for anyone with a serious interest in circuit design and future biomedical technology, whether you 're a seasoned practitioner or graduate student preparing for work in this challenging field.
Logic-timing simulation and the degradation delay model
This book provides the reader with an extensive background in the field of logic-timing simulation and delay modeling. It includes detailed information on the challenges of logic-timing simulation, applications, advantages and drawbacks. The capabilities of logic-timing are explored using the latest research results that are brought together from previously disseminated materials. An important part of the book is devoted to the description of the “Degradation Delay Model”, developed by the authors, showing how the inclusion of dynamic effects in the modeling of delays greatly improves the application cases and accuracy of logic-timing simulation. These ideas are supported by simulation results extracted from a wide range of practical applications.
High performance devices
This volume presents state-of-the-art works from top academic and research institutions in the areas of high performance semiconductor materials, devices, and circuits. A broad coverage of topics relating to high performance devices and circuits is featured here. There are 46 contributed papers covering a wide range of materials, device types, and applications. These papers describe the results of ongoing research in three general areas: high speed technologies for advanced mixed signal and terahertz applications, advanced technologies for high performance optical links and light sources, and high power density and high efficiency technologies for next generation microwave front ends and power electronics.
Mixed analog-digital vlsi devices and technology
Improve your circuit-design potential with this expert guide to the devices and technology used in mixed analog-digital VLSI chips for such high-volume applications as hard-disk drives, wireless telephones, and consumer electronics. The book provides you with a critical understanding of device models, fabrication technology, and layout as they apply to mixed analog-digital circuits.You will learn about the many device-modeling requirements for analog work, as well as the pitfalls in models used today for computer simulators such as Spice. Also included is information on fabrication technologies developed specifically for mixed-signal VLSI chips, plus guidance on the layout of mixed analog-digital chips for a high degree of analog-device matching and minimum digital-to-analog interference.This reference book features an intuitive introduction to MOSFET operation that will enable you to view with insight any MOSFET model — besides thorough discussions on valuable large-signal and small-signal models.Filled with practical information, this first-of-its-kind book will help you grasp the nuances of mixed-signal VLSI-device models and layout that are crucial to the design of high-performance chips.