Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
242 result(s) for "Integrin alphaVbeta3 - genetics"
Sort by:
Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions
Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven “retrograde flow” of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues.
Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial–mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated α v β 3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.
Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii
Key Points Coxiella burnetii is a Gram-negative obligate intracellular bacterial pathogen that is the aetiological agent of Q fever, which manifests as both acute and chronic infections. The infection is a zoonosis that is most often transmitted by aerosolized dry, contaminated soil or animal products. Genetic differences between C. burnetii isolates from acute and chronic infections have led to the hypothesis that pathotype-specific virulence exists. After inhalation by a host, C. burnetii invades and replicates within alveolar macrophages without alerting the innate immune system and has therefore been described as a stealth pathogen. Inside macrophages, the bacterium replicates within a compartment that is very similar to a phagolysosome, termed the Coxiella -containing vacuole (CCV). C. burnetii has a type IV secretion system that resembles the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system of Legionella pneumophila and is necessary for pathogenesis. C. burnetii encodes homologues for 24 of the 27 L. pneumophila Dot/Icm proteins, and four C. burnetii Dot/Icm genes can actually complement homologous mutations in the L. pneumophila system, lending strength to the conjecture that these systems are structurally and functionally similar. Establishment and maintenance of the CCV is dependent on protein production by C. burnetii . Although the identity of the virulence factors involved are unknown, new evidence suggests that most are effectors secreted by the type IV secretion system. The recent development of axenic media to grow C. burnetii has enabled the development of genetic tools to identify virulence factors. These developments have started a new era of research for C. burnetii , and Koch's postulates can now be tested for the first time. The obligate intracellular bacterium Coxiella burnetii causes both acute and chronic zoonotic infections. Here, Samuel and colleagues discuss the recent technological advances that have facilitated a deeper understanding of the molecular mechanisms of C. burnetii pathogenesis, including host cell invasion and modulation by virulence factors exported through the type IV Dot/Icm secretion system. The agent of Q fever, Coxiella burnetii , is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella -containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell.
The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation
Ovarian carcinoma is the fifth common cause of cancer death in women, despite advanced therapeutic approaches. αvβ3 integrin, a plasma membrane receptor, binds thyroid hormones (L-thyroxine, T4; 3,5,3’-triiodo-L-thyronine, T3) and is overexpressed in ovarian cancer. We have demonstrated selective binding of fluorescently labeled hormones to αvβ3-positive ovarian cancer cells but not to integrin-negative cells. Physiologically relevant T3 (1 n M ) and T4 (100 n M ) concentrations in OVCAR-3 (high αvβ3) and A2780 (low αvβ3) cells promoted αv and β3 transcription in association with basal integrin levels. This transcription was effectively blocked by RGD (Arg–Gly–Asp) peptide and neutralizing αvβ3 antibodies, excluding T3-induced β3 messenger RNA, suggesting subspecialization of T3 and T4 binding to the integrin receptor pocket. We have provided support for extracellular regulated kinase (ERK)-mediated transcriptional regulation of the αv monomer by T3 and of β3 monomer by both hormones and documented a rapid (30–120 min) and dose-dependent (0.1–1000 n M ) ERK activation. OVCAR-3 cells and αvβ3-deficient HEK293 cells treated with αvβ3 blockers confirmed the requirement for an intact thyroid hormone-integrin interaction in ERK activation. In addition, novel data indicated that T4, but not T3, controls integrin's outside-in signaling by phosphorylating tyrosine 759 in the β3 subunit. Both hormones induced cell proliferation (cell counts), survival (Annexin-PI), viability (WST-1) and significantly reduced the expression of genes that inhibit cell cycle ( p21, p16 ), promote mitochondrial apoptosis ( Nix , PUMA ) and tumor suppression ( GDF-15 , IGFBP-6), particularly in cells with high integrin expression. At last, we have confirmed that hypothyroid environment attenuated ovarian cancer growth using a novel experimental platform that exploited paired euthyroid and severe hypothyroid serum samples from human subjects. To conclude, our data define a critical role for thyroid hormones as potent αvβ3-ligands, driving ovarian cancer cell proliferation and suggest that disruption of this axis may present a novel treatment strategy in this aggressive disease.
Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis
Background We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. Methods The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. Results We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. Conclusion These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.
Alpha-v–containing integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP
Malaria-causing Plasmodium sporozoites are deposited in the dermis by the bite of an infected mosquito and move by gliding motility to the liver where they invade and develop within host hepatocytes. Although extracellular interactions between Plasmodium sporozoite ligands and host receptors provide important guidance cues for productive infection and are good vaccine targets, these interactions remain largely uncharacterized. Thrombospondin-related anonymous protein (TRAP) is a parasite cell surface ligand that is essential for both gliding motility and invasion because it couples the extracellular binding of host receptors to the parasite cytoplasmic actinomyosin motor; however, the molecular nature of the host TRAP receptors is poorly defined. Here, we use a systematic extracellular protein interaction screening approach to identify the integrin αvβ3 as a directly interacting host receptor for Plasmodium falciparum TRAP. Biochemical characterization of the interaction suggests a two-site binding model, requiring contributions from both the von Willebrand factor A domain and the RGD motif of TRAP for integrin binding. We show that TRAP binding to cells is promoted in the presence of integrin-activating proadhesive Mn2+ ions, and that cells genetically targeted so that they lack cell surface expression of the integrin αv-subunit are no longer able to bind TRAP. P. falciparum sporozoites moved with greater speed in the dermis of Itgb3-deficient mice, suggesting that the interaction has a role in sporozoite migration. The identification of the integrin αvβ3 as the host receptor for TRAP provides an important demonstration of a sporozoite surface ligand that directly interacts with host receptors.
Nonimmune cell–derived ICOS ligand functions as a renoprotective αvβ3 integrin–selective antagonist
Soluble urokinase receptor (suPAR) is a circulatory molecule that activates αvβ3 integrin on podocytes, causes foot process effacement, and contributes to proteinuric kidney disease. While active integrin can be targeted by antibodies and small molecules, endogenous inhibitors haven't been discovered yet. Here we report what we believe is a novel renoprotective role for the inducible costimulator ligand (ICOSL) in early kidney disease through its selective binding to podocyte αvβ3 integrin. Contrary to ICOSL's immune-regulatory role, ICOSL in nonhematopoietic cells limited the activation of αvβ3 integrin. Specifically, ICOSL contains the arginine-glycine-aspartate (RGD) motif, which allowed for a high-affinity and selective binding to αvβ3 and modulation of podocyte adhesion. This binding was largely inhibited either by a synthetic RGD peptide or by a disrupted RGD sequence in ICOSL. ICOSL binding favored the active αvβ3 rather than the inactive form and showed little affinity for other integrins. Consistent with the rapid induction of podocyte ICOSL by inflammatory stimuli, glomerular ICOSL expression was increased in biopsies of early-stage human proteinuric kidney diseases. Icosl deficiency in mice resulted in an increased susceptibility to proteinuria that was rescued by recombinant ICOSL. Our work identified a potentially novel role for ICOSL, which serves as an endogenous αvβ3-selective antagonist to maintain glomerular filtration.
Epidermal growth factor-like domain 7 drives brain lymphatic endothelial cell development through integrin αvβ3
In zebrafish, brain lymphatic endothelial cells (BLECs) are essential for meningeal angiogenesis and cerebrovascular regeneration. Although epidermal growth factor-like domain 7 (Egfl7) has been reported to act as a pro-angiogenic factor, its roles in lymphangiogenesis remain unclear. Here, we show that Egfl7 is expressed in both blood and lymphatic endothelial cells. We generate an egfl7 cq180 mutant with a 13-bp-deletion in exon 3 leading to reduced expression of Egfl7. The egfl7 cq180 mutant zebrafish exhibit defective formation of BLEC bilateral loop-like structures, although trunk and facial lymphatic development remains unaffected. Moreover, while the egfl7 cq180 mutant displays normal BLEC lineage specification, the migration and proliferation of these cells are impaired. Additionally, we identify integrin αvβ3 as the receptor for Egfl7. αvβ3 is expressed in the CVP and sprouting BLECs, and blocking this integrin inhibits the formation of BLEC bilateral loop-like structures. Thus, this study identifies a role for Egfl7 in BLEC development that is mediated through the integrin αvβ3. Although epidermal growth factor-like domain 7 (Egfl7) is known to play a pro-angiogenic role in zebrafish, its contribution to brain lymphangiogenesis remains less clear. Here, the authors demonstrate that Egfl7 is dispensable for brain lymphatic endothelial cell specification, but not their migration and proliferation.
Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3
Tumor metastasis is the leading cause of cancer-associated mortality. Unfortunately, the underlying mechanism of metastasis is poorly understood. Expression of legumain (LGMN), an endo-lysosomal cysteine protease, positively correlates with breast cancer metastatic progression and poor prognosis. Here, we report that LGMN is secreted in the zymogen form by motile breast cancer cells. Through binding to cell surface integrin αvβ3 via an RGD motif, the autocrine pro-LGMN activates FAK-Src-RhoA signaling in cancer cells and promotes cancer cell migration and invasion independent of LGMN protease activity. Either silencing LGMN expression or mutationally abolishing pro-LGMN‒αvβ3 interaction significantly inhibits cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Finally, we developed a monoclonal antibody against LGMN RGD motif, which blocks pro-LGMN‒αvβ3 binding, and effectively suppresses cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Thus, disruption of pro-LGMN‒integrin αvβ3 interaction may be a potentially promising strategy for treating breast cancer metastasis.
Vitronectin‐activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells
Objectives Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder‐free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. Materials and Methods A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN‐mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. Results We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial‐haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvβ3 and αvβ5 integrins were required for VTN‐promoted haematopoietic differentiation. Blocking αvβ3 and αvβ5 integrins by the integrin antagonists impaired the development of HE, but not endothelial‐to‐haematopoietic transition (EHT). Finally, both αvβ3 and αvβ5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, β3 or β5. Conclusion The established VTN‐based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development. Compared with Matrigel (MTG), vitronectin (VTN) was required for the mesoderm to acquire higher endothelial‐hematopoietic potential. The promoting effect of VTN on early hematopoiesis was dependent on αvβ3 and αvβ5 integrins. Inhibition of αvβ3 and αvβ5 impaired HE development without affecting EHT.