Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Interactive Ventilatory Support - adverse effects"
Sort by:
Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV
Background Prolonged controlled mechanical ventilation depresses diaphragmatic efficiency. Assisted modes of ventilation should improve it. We assessed the impact of pressure support ventilation versus neurally adjusted ventilator assist on diaphragmatic efficiency. Method Patients previously ventilated with controlled mechanical ventilation for 72 hours or more were randomized to be ventilated for 48 hours with pressure support ventilation (n =12) or neurally adjusted ventilatory assist (n = 13). Neuro-ventilatory efficiency (tidal volume/diaphragmatic electrical activity) and neuro-mechanical efficiency (pressure generated against the occluded airways/diaphragmatic electrical activity) were measured during three spontaneous breathing trials (0, 24 and 48 hours). Breathing pattern, diaphragmatic electrical activity and pressure time product of the diaphragm were assessed every 4 hours. Results In patients randomized to neurally adjusted ventilator assist, neuro-ventilatory efficiency increased from 27 ± 19 ml/μV at baseline to 62 ± 30 ml/μV at 48 hours (p <0.0001) and neuro-mechanical efficiency increased from 1 ± 0.6 to 2.6 ± 1.1 cmH 2 O/μV (p = 0.033). In patients randomized to pressure support ventilation, these did not change. Electrical activity of the diaphragm, neural inspiratory time, pressure time product of the diaphragm and variability of the breathing pattern were significantly higher in patients ventilated with neurally adjusted ventilatory assist. The asynchrony index was 9.48 [6.38– 21.73] in patients ventilated with pressure support ventilation and 5.39 [3.78– 8.36] in patients ventilated with neurally adjusted ventilatory assist (p = 0.04). Conclusion After prolonged controlled mechanical ventilation, neurally adjusted ventilator assist improves diaphragm efficiency whereas pressure support ventilation does not. Trial registration ClinicalTrials.gov study registration: NCT0247317 , 06/11/2015.
Proportional-Assist Ventilation for Minimizing the Duration of Mechanical Ventilation
In this randomized trial, proportional-assist ventilation with load-adjustable gain factors did not differ significantly from pressure-support ventilation with respect to the time to liberation from mechanical ventilation.
Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial
Purpose Neurally adjusted ventilatory assist (NAVA) is a ventilatory mode that tailors the level of assistance delivered by the ventilator to the electromyographic activity of the diaphragm. The objective of this study was to compare NAVA and pressure support ventilation (PSV) in the early phase of weaning from mechanical ventilation. Methods A multicentre randomized controlled trial of 128 intubated adults recovering from acute respiratory failure was conducted in 11 intensive care units. Patients were randomly assigned to NAVA or PSV. The primary outcome was the probability of remaining in a partial ventilatory mode (either NAVA or PSV) throughout the first 48 h without any return to assist-control ventilation. Secondary outcomes included asynchrony index, ventilator-free days and mortality. Results In the NAVA and PSV groups respectively, the proportion of patients remaining in partial ventilatory mode throughout the first 48 h was 67.2 vs. 63.3 % ( P  = 0.66), the asynchrony index was 14.7 vs. 26.7 % ( P  < 0.001), the ventilator-free days at day 7 were 1.0 day [1.0–4.0] vs. 0.0 days [0.0–1.0] ( P  < 0.01), the ventilator-free days at day 28 were 21 days [4–25] vs. 17 days [0–23] ( P  = 0.12), the day-28 mortality rate was 15.0 vs. 22.7 % ( P  = 0.21) and the rate of use of post-extubation noninvasive mechanical ventilation was 43.5 vs. 66.6 % ( P  < 0.01). Conclusions NAVA is safe and feasible over a prolonged period of time but does not increase the probability of remaining in a partial ventilatory mode. However, NAVA decreases patient–ventilator asynchrony and is associated with less frequent application of post-extubation noninvasive mechanical ventilation. Trial Registration. clinicaltrials.gov Identifier: NCT02018666.
Feasibility and physiological effects of noninvasive neurally adjusted ventilatory assist in preterm infants
Background Noninvasive neurally adjusted ventilator assist (NIV-NAVA) was introduced to our clinical practice via a pilot and a randomized observational study to assess its safety, feasibility, and short-term physiological effects. Methods The pilot protocol applied NIV-NAVA to 11 infants on nasal CPAP, high-flow nasal cannula, or nasal intermittent mandatory ventilation (NIMV), in multiple 2- to 4-h periods of NIV-NAVA for comparison. This provided the necessary data to design a randomized, controlled observational crossover study in eight additional infants to compare the physiological effects of NIV-NAVA with NIMV during 2-h steady-state conditions. We recorded the peak inspiratory pressure (PIP), FiO 2 , Edi, oxygen saturations (histogram analysis), transcutaneous PCO 2 , and movement with an Acoustic Respiratory Movement Sensor. Results The NAVA catheter was used for 81 patient days without complications. NIV-NAVA produced significant reductions (as a percentage of measurements on NIMV) in the following: PIP, 13%; FiO 2 , 13%; frequency of desaturations, 42%; length of desaturations, 32%; and phasic Edi, 19%. Infant movement and caretaker movement were reduced by 42% and 27%, respectively. Neural inspiratory time was increased by 39 ms on NIV-NAVA, possibly due to Head’s paradoxical reflex. Conclusion NIV-NAVA was a safe, alternative mode of noninvasive support that produced beneficial short-term physiological effects, especially compared with NIMV.
The Diaphragmatic Initiated Ventilatory Assist (DIVA) trial: study protocol for a randomized controlled trial comparing rates of extubation failure in extremely premature infants undergoing extubation to non-invasive neurally adjusted ventilatory assist versus non-synchronized nasal intermittent positive pressure ventilation
Background Invasive mechanical ventilation contributes to bronchopulmonary dysplasia (BPD), the most common complication of prematurity and the leading respiratory cause of childhood morbidity. Non-invasive ventilation (NIV) may limit invasive ventilation exposure and can be either synchronized or non-synchronized (NS). Pooled data suggest synchronized forms may be superior. Non-invasive neurally adjusted ventilatory assist (NIV-NAVA) delivers NIV synchronized to the neural signal for breathing, which is detected with a specialized catheter. The DIVA (Diaphragmatic Initiated Ventilatory Assist) trial aims to determine in infants born 24 0/7 –27 6/7  weeks’ gestation undergoing extubation whether NIV-NAVA compared to non-synchronized nasal intermittent positive pressure ventilation (NS-NIPPV) reduces the incidence of extubation failure within 5 days of extubation. Methods This is a prospective, unblinded, pragmatic, multicenter phase III randomized clinical trial. Inclusion criteria are preterm infants 24–27 6/7  weeks gestational age who were intubated within the first 7 days of life for at least 12 h and are undergoing extubation in the first 28 postnatal days. All sites will enter an initial run-in phase, where all infants are allocated to NIV-NAVA, and an independent technical committee assesses site performance. Subsequently, all enrolled infants are randomized to NIV-NAVA or NS-NIPPV at extubation. The primary outcome is extubation failure within 5 days of extubation, defined as any of the following: (1) rise in FiO 2 at least 20% from pre-extubation for > 2 h, (2) pH ≤ 7.20 or pCO 2  ≥ 70 mmHg; (3) > 1 apnea requiring positive pressure ventilation (PPV) or ≥ 6 apneas requiring stimulation within 6 h; (4) emergent intubation for cardiovascular instability or surgery. Our sample size of 478 provides 90% power to detect a 15% absolute reduction in the primary outcome. Enrolled infants will be followed for safety and secondary outcomes through 36 weeks’ postmenstrual age, discharge, death, or transfer. Discussion The DIVA trial is the first large multicenter trial designed to assess the impact of NIV-NAVA on relevant clinical outcomes for preterm infants. The DIVA trial design incorporates input from clinical NAVA experts and includes innovative features, such as a run-in phase, to ensure consistent technical performance across sites. Trial registration www.ClinicalTrials.gov , trial identifier NCT05446272 , registered July 6, 2022.
Study protocol for a randomized controlled trial of Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: the PROMIZING study
Background Proportional assist ventilation with load-adjustable gain factors (PAV+) is a mechanical ventilation mode that delivers assistance to breathe in proportion to the patient’s effort. The proportional assistance, called the gain, can be adjusted by the clinician to maintain the patient’s respiratory effort or workload within a normal range. Short-term and physiological benefits of this mode compared to pressure support ventilation (PSV) include better patient-ventilator synchrony and a more physiological response to changes in ventilatory demand. Methods The objective of this multi-centre randomized controlled trial (RCT) is to determine if, for patients with acute respiratory failure, ventilation with PAV+ will result in a shorter time to successful extubation than with PSV. This multi-centre open-label clinical trial plans to involve approximately 20 sites in several continents. Once eligibility is determined, patients must tolerate a short-term PSV trial and either (1) not meet general weaning criteria or (2) fail a 2-min Zero Continuous Positive Airway Pressure (CPAP) Trial using the rapid shallow breathing index, or (3) fail a spontaneous breathing trial (SBT), in this sequence. Then, participants in this study will be randomized to either PSV or PAV+ in a 1:1 ratio. PAV+ will be set according to a target of muscular pressure. The weaning process will be identical in the two arms. Time to liberation will be the primary outcome; ventilator-free days and other outcomes will be measured. Discussion Meta-analyses comparing PAV+ to PSV suggest PAV+ may benefit patients and decrease healthcare costs but no powered study to date has targeted the difficult to wean patient population most likely to benefit from the intervention, or used consistent timing for the implementation of PAV+. Our enrolment strategy, primary outcome measure, and liberation approaches may be useful for studying mechanical ventilation and weaning and can offer important results for patients. Trial registration ClinicalTrials.gov NCT02447692 . Prospectively registered on May 19, 2015.
Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia
COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO ) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions ( =0.064). There were also no clinically relevant differences in PtcCO between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated events.
The Esophageal Pressure-Guided Ventilation 2 (EPVent2) trial protocol: a multicentre, randomised clinical trial of mechanical ventilation guided by transpulmonary pressure
Introduction Optimal ventilator management for patients with acute respiratory distress syndrome (ARDS) remains uncertain. Lower tidal volume ventilation appears to be beneficial, but optimal management of positive end-expiratory pressure (PEEP) remains unclear. The Esophageal Pressure-Guided Ventilation 2 Trial (EPVent2) aims to examine the impact of mechanical ventilation directed at maintaining a positive transpulmonary pressure (PTP) in patients with moderate-to-severe ARDS. Methods and analysis EPVent2 is a multicentre, prospective, randomised, phase II clinical trial testing the hypothesis that the use of a PTP-guided ventilation strategy will lead to improvement in composite outcomes of mortality and time off the ventilator at 28 days as compared with a high-PEEP control. This study will enrol 200 study participants from 11 hospitals across North America. The trial will utilise a primary composite end point that incorporates death and days off the ventilator at 28 days to test the primary hypothesis that adjusting ventilator pressure to achieve positive PTP values will result in improved mortality and ventilator-free days. Ethics and dissemination Safety oversight will be under the direction of an independent Data and Safety Monitoring Board (DSMB). Approval of the protocol was obtained from the DSMB prior to enrolling the first study participant. Approvals of the protocol as well as informed consent documents were also obtained from the Institutional Review Board of each participating institution prior to enrolling study participants at each respective site. The findings of this investigation, as well as associated ancillary studies, will be disseminated in the form of oral and abstract presentations at major national and international medical specialty meetings. The primary objective and other significant findings will also be presented in manuscript form. All final, published manuscripts resulting from this protocol will be submitted to PubMed Central in accordance with the National Institute of Health Public Access Policy. Trial registration number ClinicalTrials.gov under number NCT01681225.
Neurally adjusted ventilatory assist in patients with acute respiratory failure: study protocol for a randomized controlled trial
Background Patient-ventilator asynchrony is a common problem in mechanically ventilated patients with acute respiratory failure. It is assumed that asynchronies worsen lung function and prolong the duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) is a novel approach to MV based on neural respiratory center output that is able to trigger, cycle, and regulate the ventilatory cycle. We hypothesized that the use of NAVA compared to conventional lung-protective MV will result in a reduction of the duration of MV. It is further hypothesized that NAVA compared to conventional lung-protective MV will result in a decrease in the length of ICU and hospital stay, and mortality. Methods/design This is a prospective, multicenter, randomized controlled trial in 306 mechanically ventilated patients with acute respiratory failure from several etiologies. Only patients ventilated for less than 5 days, and who are expected to require prolonged MV for an additional 72 h or more and are able to breathe spontaneously, will be considered for enrollment. Eligible patients will be randomly allocated to two ventilatory arms: (1) conventional lung-protective MV ( n  = 153) and conventional lung-protective MV with NAVA ( n  = 153). Primary outcome is the number of ventilator-free days, defined as days alive and free from MV at day 28 after endotracheal intubation. Secondary outcomes are total length of MV, and ICU and hospital mortality. Discussion This is the first randomized clinical trial examining, on a multicenter scale, the beneficial effects of NAVA in reducing the dependency on MV of patients with acute respiratory failure. Trial registration ClinicalTrials.gov website ( NCT01730794 ). Registered on 15 November 2012.
Neurally Adjusted Ventilatory Assist in Preterm Neonates with Acute Respiratory Failure
Background: Neurally adjusted ventilatory assist (NAVA) is a novel mode of ventilation that has been demonstrated to improve infant-ventilator interaction, compared to the conventional modes in retrospective and short-term studies. Objectives: To prospectively evaluate the physiologic effects of NAVA in comparison with pressure-regulated volume control (PRVC) in two nonrandomized 12-hour periods. Methods: We studied 14 consecutive intubated preterm neonates receiving mechanical ventilation for acute respiratory failure. Peak airway pressure (Paw peak ), diaphragm electrical activity (EAdi), tidal volume (V T ), mechanical (RR mec ) and neural (RR neu ) respiratory rates, neural apneas, and the capillary arterialized blood gases were measured. The RR mec -to-RR neu ratio (MNR) and the asynchrony index were also calculated. The amount of fentanyl administered was recorded. Results: Paw peak and V T were greater in PRVC (p < 0.01). Blood gases and RR mec were not different between modes, while RR neu and the EAdi swings were greater in NAVA (p = 0.02 and p < 0.001, respectively). MNR and the asynchrony index were remarkably lower in NAVA than in PRVC (p = 0.03 and p < 0.001, respectively). 1,841 neural apneas were observed during PRVC, with none in NAVA. Less fentanyl was administered during NAVA, as opposed to PRVC (p < 0.01). Conclusions: In acutely ill preterm neonates, NAVA can be safely and efficiently applied for 12 consecutive hours. Compared to PRVC, NAVA is well tolerated with fewer sedatives.