Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
38 result(s) for "Interferon Regulatory Factor-2 - physiology"
Sort by:
Dysregulation of interferon regulatory factors impairs the expression of immunostimulatory molecules in hepatitis C virus genotype 1-infected hepatocytes
Background IL-7 and IL-15 are produced by hepatocytes and are critical for the expansion and function of CD8 T cells. IL-15 needs to be presented by IL-15Rα for efficient stimulation of CD8 T cells. Methods We analysed the hepatic levels of IL-7, IL-15, IL-15Rα and interferon regulatory factors (IRF) in patients with chronic hepatitis C (CHC) (78% genotype 1) and the role of IRF1 and IRF2 on IL-7 and IL-15Rα expression in Huh7 cells with or without hepatitis C virus (HCV) replicon. Results Hepatic expression of both IL-7 and IL-15Rα, but not of IL-15, was reduced in CHC. These patients exhibited decreased hepatic IRF2 messenger RNA levels and diminished IRF2 staining in hepatocyte nuclei. We found that IRF2 controls basal expression of both IL-7 and IL-15Rα in Huh7 cells. IRF2, but not IRF1, is downregulated in cells with HCV genotype 1b replicon and this was accompanied by decreased expression of IL-7 and IL-15Rα, a defect reversed by overexpressing IRF2. Treating Huh7 cells with IFNα plus oncostatin M increased IL-7 and IL-15Rα mRNA more intensely than either cytokine alone. This effect was mediated by strong upregulation of IRF1 triggered by the combined treatment. Induction of IRF1, IL-7 and IL-15Rα by IFNα plus oncostatin M was dampened in replicon cells but the combination was more effective than either cytokine alone. Conclusions HCV genotype 1 infection downregulates IRF2 in hepatocytes attenuating hepatocellular expression of IL-7 and IL-15Rα. Our data reveal a new mechanism by which HCV abrogates specific T-cell responses and point to a novel therapeutic approach to stimulate anti-HCV immunity.
A Gammaherpesvirus Cooperates with Interferon-alpha/beta-Induced IRF2 to Halt Viral Replication, Control Reactivation, and Minimize Host Lethality
The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5' to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship.
Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation
We have previously shown that interferon regulatory factor-2 (IRF-2) is acetylated in a cell growth-dependent manner, which enables it to contribute to the transcription of cell growth-regulated promoters. To clarify the function of acetylation of IRF-2, we investigated the proteins that associate with acetylated IRF-2. In 293T cells, the transfection of p300/CBP-associated factor (PCAF) enhanced the acetylation of IRF-2. In cells transfected with both IRF-2 and PCAF, IRF-2 associated with endogenous nucleolin, while in contrast, minimal association was observed when IRF-2 was transfected with a PCAF histone acetyl transferase (HAT) deletion mutant. In a pull-down experiment using stable transfectants, acetylation-defective mutant IRF-2 (IRF-2K75R) recruited nucleolin to a much lesser extent than wild-type IRF-2, suggesting that nucleolin preferentially associates with acetylated IRF-2. Nucleolin in the presence of PCAF enhanced IRF-2-dependent H4 promoter activity in NIH3T3 cells. Nucleolin knock-down using siRNA reduced the IRF-2/PCAF-mediated promoter activity. Chromatin immunoprecipitation analysis indicated that PCAF transfection increased nucleolin binding to IRF-2 bound to the H4 promoter. We conclude that nucleolin is recruited to acetylated IRF-2, thereby contributing to gene regulation crucial for the control of cell growth.
A retroviral library genetic screen identifies IRF-2 as an inhibitor of N-ras-induced growth suppression in leukemic cells
Activating mutations of the N-ras gene occur at relatively high frequency in acute myeloid leukemia and myelodysplastic syndrome. Somewhat paradoxically, ectopic expression of activated N-ras in primary hematopoietic cells and myeloid cell lines (in some cases) can lead to inhibition of proliferation. Expression of mutant N-ras in murine hematopoietic stem/progenitor cells is sufficient to induce myeloid malignancies, but these pathologies occur with long latency. This suggests that mutations that disable the growth suppressive properties of N-ras in hematopoietic cells are required for the development of frank malignancy. In the present work, the growth suppression induced by a mutant N-ras gene in U937 myeloid cells was used as the basis to screen a retroviral cDNA library for genes that prevent mutant N-ras -induced growth suppression (i.e., putative cooperating oncogenes). This screen identified the gene for the transcription factor interferon regulatory factor-2 (IRF-2), and as confirmation of the screen, overexpression of this gene in U937 cells was shown to inhibit mutant N-ras -induced growth suppression. Also recovered from the screen were two truncated clones of an uncharacterized gene (interim official symbol: PP2135 ). Overexpression of this truncated PP2135 gene in U937 cells did not appear to abrogate mutant N-ras -induced growth suppression, but rather appeared to confer an increased sensitivity of U937 cells to retroviral infection, accounting for the recovery of this gene from the genetic screen.
Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity
Cancers often evade immune surveillance by adopting peripheral tissue- tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4(+) T cell-mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells.
IRF2 maintains the stemness of colonic stem cells by limiting physiological stress from interferon
The physiological stresses that diminish tissue stem-cell characteristics remain largely unknown. We previously reported that type I interferon (IFN), which is essential for host antiviral responses, is a physiological stressor for hematopoietic stem cells (HSCs) and small intestinal stem cells (ISCs) and that interferon regulatory factor-2 (IRF2), which attenuates IFN signaling, maintains their stemness. Here, using a dextran sodium sulfate (DSS)-induced colitis model, we explore the role of IRF2 in maintaining colonic epithelial stem cells (CoSCs). In mice with a conditional Irf2 deletion in the intestinal epithelium (hereafter Irf2 ΔIEC mice) , both the number and the organoid-forming potential of CoSCs were markedly reduced. Consistent with this finding, the ability of Irf2 ΔIEC mice to regenerate colon epithelium after inducing colitis was severely impaired, independently of microbial dysbiosis. Mechanistically, CoSCs differentiated prematurely into transit-amplifying (TA) cells in Irf2 ΔIEC mice, which might explain their low CoSC counts. A similar phenotype was induced in wild-type mice by repeated injections of low doses of poly(I:C), which induces type I IFN. Collectively, we demonstrated that chronic IFN signaling physiologically stresses CoSCs. This study provides new insight into the development of colitis and molecular mechanisms that maintain functional CoSCs throughout life.
Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation
Boss and colleagues provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming events during plasma cell differentiation. The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.
Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells
The objective response rate of immune checkpoint blockade (ICB) in hepatocellular carcinoma (HCC) with anti PD-L1/PD-1 therapy is low. Discovering the signaling pathways regulating PD-L1 might help to improve ICB response rates. Here, we investigate transcription factors IRF-1 and IRF-2 signaling pathways regulating PD-L1 in HCC cells. In vivo studies show that IRF-1 and PD-L1 mRNA expression in human HCC tumors are significantly repressed compared with noncancerous background liver. IRF-1, IRF-2, and PD-L1 mRNA expression correlated positively in HCC tumors. Increased IRF-1 mRNA expression was observed in patients with well-differentiated or early stage HCC tumors. In vitro studies show that IFN-γ induces PD-L1 mRNA and protein expression through upregulation of IRF-1 in mouse and human HCC cells. IRF-1, IRF-2, and PD-L1 mRNA expression is upregulated in murine HCC by co-culture with effector T cells from spleen cells incubated with anti-CD3/CD28 antibodies. IRF-2 over-expression down-regulates IFN-γ induced PD-L1 promoter activity and protein levels in a dose-dependent manner. We identify two IRF-1 response elements (IRE1/IRE2) in the upstream 5′-flanking region of the CD274 (PD-L1) gene promoter. Site-directed mutagenesis shows both IRE1 and IRE2 are functional in transfection promoter assays. IRF-1 traditionally functions as tumor suppressor gene. However, these novel findings show a complex role for IRF-1 which upregulates PD-L1 in the inflammatory tumor microenvironment. IRF-1 antagonizes IRF-2 for binding to the IRE promoter element in PD-L1 which gives new insight to the regulation of PD-L1/PD-1 pathways in HCC ICB therapy.
Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells. Summary Sentence Interferon tau and pregnancy in ruminant species.
IRF2 is a master regulator of human keratinocyte stem cell fate
Resident adult epithelial stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. The stem cell potential of human epidermal keratinocytes is retained in vitro but lost over time suggesting extrinsic and intrinsic regulation. Transcription factor-controlled regulatory circuitries govern cell identity, are sufficient to induce pluripotency and transdifferentiate cells. We investigate whether transcriptional circuitry also governs phenotypic changes within a given cell type by comparing human primary keratinocytes with intrinsically high versus low stem cell potential. Using integrated chromatin and transcriptional profiling, we implicate IRF2 as antagonistic to stemness and show that it binds and regulates active cis -regulatory elements at interferon response and antigen presentation genes. CRISPR-KD of IRF2 in keratinocytes with low stem cell potential increases self-renewal, migration and epidermis formation. These data demonstrate that transcription factor regulatory circuitries, in addition to maintaining cell identity, control plasticity within cell types and offer potential for therapeutic modulation of cell function. Epidermal homeostasis requires long term stem cell function. Here, the authors apply transcriptional circuitry analysis based on integrated epigenomic profiling of primary human keratinocytes with high and low stem cell function to identify IRF2 as a negative regulator of stemness.