Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,347
result(s) for
"Interferon beta"
Sort by:
Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes
by
Wittling, Megen C.
,
Levenson, Eric A.
,
Rabin, Ronald L.
in
Adaptive immunity
,
Antiviral Agents - therapeutic use
,
Cell proliferation
2021
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Journal Article
The type I interferon response in COVID-19: implications for treatment
2020
Despite early reports to the contrary, there is increasing evidence that patients with severe COVID-19 have a robust type I interferon response, which contrasts with the delayed, possibly suppressed, interferon response seen early in infection. A robust type I interferon response could exacerbate hyperinflammation in the progression to severe COVID-19 through diverse mechanisms. Further understanding of the roles of type I interferon at different stages of infection and in patients with mild versus severe COVID-19 will provide insights for the therapeutic use of interferon administration or JAK inhibitors in patients with COVID-19.In this Comment, Jeong Seok Lee and Eui-Cheol Shin discuss contradictory results regarding the downregulation or upregulation of type I interferon responses in patients with COVID-19 and the implications for therapies that target this pathway.
Journal Article
Activation and evasion of type I interferon responses by SARS-CoV-2
The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-β promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-β treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2.
The pandemic of SARS-CoV-2 post a significant threat to public health. Here the authors show, by screening 23 viral proteins, that both structural and non-structural SARS-CoV-2 proteins are capable of modulating host innate immunity and type interferon responses, with this information serves to warrant further studies on SARS-CoV-2 pathogenesis.
Journal Article
DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity
2017
Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. However, the mechanisms by which radiation induces anti-tumour T cells remain unclear. We show that the DNA exonuclease Trex1 is induced by radiation doses above 12–18 Gy in different cancer cells, and attenuates their immunogenicity by degrading DNA that accumulates in the cytosol upon radiation. Cytosolic DNA stimulates secretion of interferon-β by cancer cells following activation of the DNA sensor cGAS and its downstream effector STING. Repeated irradiation at doses that do not induce Trex1 amplifies interferon-β production, resulting in recruitment and activation of Batf3-dependent dendritic cells. This effect is essential for priming of CD8
+
T cells that mediate systemic tumour rejection (abscopal effect) in the context of immune checkpoint blockade. Thus, Trex1 is an upstream regulator of radiation-driven anti-tumour immunity. Trex1 induction may guide the selection of radiation dose and fractionation in patients treated with immunotherapy.
Trex1 is an exonuclease that degrades cytosolic DNA and has been associated with modulation of interferon responses in autoimmunity and viral infections. Here, the authors show that Trex1 attenuates the immunogenicity of cancer cells treated with high radiation doses by degrading cytosolic DNA and preventing the activation of interferon response.
Journal Article
The Mechanism of Action of Interferon-β in Relapsing Multiple Sclerosis
by
Kieseier, Bernd C.
in
Biological and medical sciences
,
Care and treatment
,
Development and progression
2011
Multiple sclerosis (MS) is characterized by autoimmune inflammation and subsequent neurodegeneration. It is believed that early in the disease course, proinflammatory T cells that are activated in the periphery by antigen presentation cross the blood-brain barrier (BBB) into the CNS directed by various chemotaxic agents. However, to date, there has been no formal demonstration of a specific precipitating antigen. Once inside the CNS, activated T cells including T helper-1 (T
h
1), T
h
17, γδ and CD8+ types are believed to secrete proinflammatory cytokines. Decreased levels of T
h
2 cells also correlate with relapses and disease progression in MS, since T
h
2-derived cytokines are predominantly anti-inflammatory. In healthy tissue, inflammatory effects are opposed by specific subsets of regulatory T cells (T
regs
) including CD4+, CD25+ and FoxP3+ cells that have the ability to downregulate the activity of proinflammatory T cells, allowing repair and recovery to generally follow inflammatory insult. Given their function, the pathogenesis of MS most likely involves deficits of T
reg
function, which allow autoimmune inflammation and resultant neurodegeneration to proceed relatively unchecked.
Interferons (IFNs) are naturally occurring cytokines possessing a wide range of anti-inflammatory properties. Recombinant forms of IFNβ are widely used as first-line treatment in relapsing forms of MS. The mechanism of action of IFNb is complex, involving effects at multiple levels of cellular function. IFNβ appears to directly increase expression and concentration of anti-inflammatory agents while downregulating the expression of proinflammatory cytokines. IFNβ treatment may reduce the trafficking of inflammatory cells across the BBB and increase nerve growth factor production, leading to a potential increase in neuronal survival and repair. IFNβ can also increase the number of CD56
bright
natural killer cells in the peripheral blood. These cells are efficient producers of anti-inflammatory mediators, and may have the ability to curb neuron inflammation. The mechanistic effects of IFNβ manifest clinically as reduced MRI lesion activity, reduced brain atrophy, increased time to reach clinically definite MS after the onset of neurological symptoms, decreased relapse rate and reduced risk of sustained disability progression.
The mechanism of action of IFNβ in MS is multifactorial and incompletely understood. Ongoing and future studies will increase our understanding of the actions of IFNβ on the immune system and the CNS, which will in turn aid advances in the management of MS.
Journal Article
Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway
by
Dai, Peihong
,
Wang, Weiyi
,
Dai, Lianpan
in
Animals
,
Biology and Life Sciences
,
Bone Marrow Cells - immunology
2014
Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.
Journal Article
Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1
by
Hertzog, Paul J
,
Zaker-Tabrizi, Leyla
,
Vivian, Julian P
in
631/250/127/1212
,
631/45/535/1266
,
Animals
2013
Type I interferons regulate immune responses by signaling via heterodimeric IFNAR1-IFNAR2 complexes. Hertzog and colleagues reveal a unique IFN-β–IFNAR1 signaling complex that is IFNAR2-independent and modulates expression of a distinct set of interferon-inducible genes.
Type I interferons are important in regulating immune responses to pathogens and tumors. All interferons are considered to signal via the heterodimeric IFNAR1-IFNAR2 complex, yet some subtypes such as interferon-β (IFN-β) can exhibit distinct functional properties, although the molecular basis of this is unclear. Here we demonstrate IFN-β can uniquely and specifically ligate to IFNAR1 in an IFNAR2-independent manner, and we provide the structural basis of the IFNAR1–IFN-β interaction. The IFNAR1–IFN-β complex transduced signals that modulated expression of a distinct set of genes independently of Jak-STAT pathways. Lipopolysaccharide-induced sepsis was ameliorated in
Ifnar1
−/−
mice but not
Ifnar2
−/−
mice, suggesting that IFNAR1–IFN-β signaling is pathologically relevant. Thus, we provide a molecular basis for understanding specific functions of IFN-β.
Journal Article
Type I Interferon Suppresses Type II Interferon—Triggered Human Anti-Mycobacterial Responses
by
Adams, John S.
,
Schenk, Mirjam
,
Lee, Delphine J.
in
25-Hydroxyvitamin D3 1-alpha-Hydroxylase - genetics
,
25-Hydroxyvitamin D3 1-alpha-Hydroxylase - metabolism
,
Antiinfectives and antibacterials
2013
Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D—dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ—induced macrophage vitamin D—dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Journal Article
Oncolytic virus-derived type I interferon restricts CAR T cell therapy
2020
The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNβ infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile. Mechanistically, type I interferon (IFN) expressed following infection promotes apoptosis, activation, and inhibitory receptor expression, and interferon-insensitive CAR T cells enable combinatorial therapy with VSVmIFNβ. Our study uncovers an unexpected mechanism of therapeutic interference, and prompts further investigation into the interaction between CAR T cells and oncolytic viruses to optimize combination therapy.
Oncolytic viruses promote an inflammatory response and elicit anti-tumor immunity. Here the authors show, unexpectedly, that the oncolytic virus, VSVIFNβ, induces type I interferon responses that, when combined with chimeric antigen receptor (CAR) T therapy, lead to the attrition of both CAR T and conventional T cells, thus dampening their anti-tumor activity.
Journal Article
Global absence and targeting of protective immune states in severe COVID-19
2021
Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals
1
–
3
, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood—including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)
3
across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.
Patients with mild COVID-19 show a pattern of interferon-stimulated gene (ISG) expression across all major cell types, but in patients with severe disease, antibodies block the production of these ISG-expressing cells.
Journal Article