Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
234 result(s) for "Interleukin-1 Receptor-Like 1 Protein - immunology"
Sort by:
IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization
The contribution of mast cells in the microenvironment of solid malignancies remains controversial. Here we functionally assess the impact of tumor-adjacent, submucosal mast cell accumulation in murine and human intestinal-type gastric cancer. We find that genetic ablation or therapeutic inactivation of mast cells suppresses accumulation of tumor-associated macrophages, reduces tumor cell proliferation and angiogenesis, and diminishes tumor burden. Mast cells are activated by interleukin (IL)-33, an alarmin produced by the tumor epithelium in response to the inflammatory cytokine IL-11, which is required for the growth of gastric cancers in mice. Accordingly, ablation of the cognate IL-33 receptor St2 limits tumor growth, and reduces mast cell-dependent production and release of the macrophage-attracting factors Csf2, Ccl3, and Il6. Conversely, genetic or therapeutic macrophage depletion reduces tumor burden without affecting mast cell abundance. Therefore, tumor-derived IL-33 sustains a mast cell and macrophage-dependent signaling cascade that is amenable for the treatment of gastric cancer. Mast cells within the tumor microenvironment have controversial roles. Here, the authors show, using genetic mouse models, that in gastric cancer, mast cells at the periphery of the tumors are activated via cancer cell produced-IL33 and promote tumorigenesis by recruiting macrophages within the tumors.
Dual targeting of tumoral cells and immune microenvironment by blocking the IL-33/IL1RL1 pathway
Leukemia stem cells (LSCs) are a small yet powerful subset of leukemic cells that possess the ability to self-renew and have a long-term tumorigenic capacity, playing a crucial role in both leukemia development and therapy resistance. These LSCs are influenced by external and internal factors within the bone marrow niche. By delving into the intricate interplay between LSCs and their immune environment, we can pave the way for innovative immunotherapies that target both the malignant stem cells and the suppressive immune microenvironment, addressing both the “seed” and the “soil” simultaneously. Through the analysis of public datasets and patient samples, we show that elevated IL1RL1 expression correlates with poor prognosis and therapy resistance in acute myeloid leukemia (AML). At the core of this process, stem cell leukemogenesis initiation and maintenance signals are driven by a stress-induced IL-33/IL1RL1 autocrine loop. This LSC-induced IL-33/IL1RL1 signaling fosters an immune regulatory microenvironment. Therefore, IL1RL1 emerges as a promising therapeutic target, with IL1RL1-specific T cell-engaging bispecific antibodies holding great potential as cutting-edge immunotherapeutics for AML. High IL1RL1 correlates with poor survival in acute myeloid leukemia. A stress-driven IL-33/IL1RL1 loop induces leukemogenesis and a tolerogenic immune environment. Targeting this axis with bispecific antibodies offers a promising treatment.
IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release
Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 -especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2- Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies.
An immune-based biomarker signature is associated with mortality in COVID-19 patients
Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.
ST2/IL-33 axis blockade inhibits regulatory T cell cytotoxicity towards CD8 T cells in the leukemic niche
Acute myeloid leukemia (AML) patients present with CD8 exhaustion signatures, and pharmacologic inhibition of checkpoints can have therapeutic benefit. The alarmin IL-33 and its receptor STimulation-2 (ST2) promote activation of tissue-regulatory T cells (T reg cells) and accelerate malignant progression in solid tumors, but their role in leukemia remains unclear. Here, we show that ST2 + T reg cells are enriched in bone marrow (BM) of humans and mice with AML and promote CD8 + T cells depletion and exhaustion. ST2 deficiency in T reg cells restores CD8 + T cell function, decreasing AML growth via retention of ST2 + T reg cells precursors in lymph nodes. AML-activated ST2 + T reg cells lack T-bet, IFN-γ and Bcl-6, and kill intratumoral CD8 + T cells by amplified granzyme B-mediated cytotoxicity compared to non-AML primed T reg cells. Engineered anti-ST2 antibodies induce ST2 + T reg cells apoptosis to extend survival in AML models. Together, our findings suggest that ST2 is a potential checkpoint target for AML immunotherapy. Therapeutic checkpoint for acute myeloid leukemia requires further investigations. The authors here identify ST2 + Treg cells facilitate AML growth by inducing CD8 + T cell depletion and exhaustion, while targeting ST2 by antibodies depletes ST2 + Treg cells and improves AML prognosis.
IL-33/ST2 axis in diverse diseases: regulatory mechanisms and therapeutic potential
Interleukin-33 (IL-33) is a nuclear factor and member of the IL-1 cytokine family. IL-33 is mainly expressed by epithelial and endothelial cells and exerts its function through interaction with various immune cells, and binding to its receptor can form the IL-33/Suppression of tumorigenicity 2 (ST2) signaling pathway. While most cytokines are actively synthesized within cells, IL-33 is produced passively in response to tissue damage or cell necrosis, indicating its role as a signaling molecule following cellular infection, stress, or trauma. IL-33/ST2 signaling pathway has been proved to play diverse role in the pathological process of central nervous system disorders, cancer, fibrosis, autoimmune diseases, etc. Although research on the IL-33/ST2 signaling pathway has deepened recently, relevant treatment strategies have been proposed, and even targeted drugs are in the preclinical stage; further research on the effect of the IL-33/ST2 signaling pathway in different diseases is still necessary, to provide a clearer understanding of the different roles of IL-33/ST2 in disease progression and to develop new drugs and treatment strategies. Because IL-33/ST2 plays an important role in the occurrence and progression of diseases, the study of therapeutic drugs targeting this pathway is also necessary. This review focused on recent studies on the positive or negative role of IL-33/ST2 in different diseases, as well as the current related drugs targeting IL-33/ST2 in the preclinical and clinical stage. The mechanism of IL-33/ST2 in different diseases and its mediating effect on different immune cells have been summarized, as well as the antibody drugs targeting IL-33 or ST2, natural compounds with a mediating effect, and small molecule substances targeting relative pathway. We aim to provide new ideas and treatment strategies for IL-33/ST2-related drugs to treat different diseases.
TGF-β induces ST2 and programs ILC2 development
The molecular pathways underlying the development of innate lymphoid cells (ILCs) are mostly unknown. Here we show that TGF-β signaling programs the development of ILC2s from their progenitors. Specifically, the deficiency of TGF-β receptor II in bone marrow progenitors results in inefficient development of ILC2s, but not ILC1s or ILC3s. Mechanistically, TGF-β signaling is required for the generation and maintenance of ILC2 progenitors (ILC2p). In addition, TGF-β upregulates the expression of the IL-33 receptor gene Il1rl1 (encoding IL-1 receptor-like 1, also known as ST2) in ILC2p and common helper-like innate lymphoid progenitors (CHILP), at least partially through the MEK-dependent pathway. These findings identify a function of TGF-β in the development of ILC2s from their progenitors. TGF-β is thought to be important for group 2 innate lymphoid cell (ILC2) function. Here the authors show that TGF-β drives expression of ST2 specifically in ILC2 progenitors and thereby is also important for the development of ILC2s in the bone marrow.
Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor
B cells protect against inflammation-associated preterm labor via IL-33-induced PIBF1 expression in mice, which suggests a therapy for this condition in humans. Preterm birth (PTB) is a leading cause of neonatal death worldwide 1 . Intrauterine and systemic infection and inflammation cause 30–40% of spontaneous preterm labor (PTL) 2 , which precedes PTB. Although antibody production is a major immune defense mechanism against infection, and B cell dysfunction has been implicated in pregnancy complications associated with PTL 3 , 4 , the functions of B cells in pregnancy are not well known 5 , 6 , 7 , 8 . We found that choriodecidua of women undergoing spontaneous PTL harbored functionally altered B cell populations. B cell–deficient mice were markedly more susceptible than wild-type (WT) mice to PTL after inflammation, but B cells conferred interleukin (IL)-10-independent protection against PTL. B cell deficiency in mice resulted in a lower uterine level of active progesterone-induced blocking factor 1 (PIBF1), and therapeutic administration of PIBF1 mitigated PTL and uterine inflammation in B cell–deficient mice. B cells are a significant producer of PIBF1 in human choriodecidua and mouse uterus in late gestation. PIBF1 expression by B cells is induced by the mucosal alarmin IL-33 (ref. 9 ). Human PTL was associated with diminished expression of the α-chain of IL-33 receptor on choriodecidual B cells and a lower level of active PIBF1 in late gestation choriodecidua. These results define a vital regulatory cascade involving IL-33, decidual B cells and PIBF1 in safeguarding term pregnancy and suggest new therapeutic approaches based on IL-33 and PIBF1 to prevent human PTL.
Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment
Interleukin-33 (IL-33) was recently shown to be involved in the inflammatory tumour microenvironment and the progression of colorectal cancer (CRC). We report here that the expression level of sST2, a soluble form of the IL-33 receptor (ST2L), is inversely associated with the malignant growth of CRC. sST2 is downregulated in high-metastatic cells compared with low-metastatic human and mouse CRC cells. Knockdown of sST2 in low-metastatic cells enhances tumour growth, metastasis and tumour angiogenesis, whereas its overexpression in high-metastatic cells suppresses these processes. Circulating and intratumourally administered sST2-Fc fusion protein reduce tumour growth, metastatic spread and tumour angiogenesis in mice bearing high-metastatic CRC. Mechanistically, sST2 suppresses IL-33-induced angiogenesis, Th1- and Th2-responses, macrophage infiltration and macrophage M2a polarization. In conclusion, we show that sST2 negatively regulates tumour growth and the metastatic spread of CRC through modification of the tumour microenvironment. Thus, the IL-33/ST2L axis may be a potential therapeutic target in CRC. IL-33 is a pro-inflammatory cytokine with a role in colorectal cancer. Here, the authors show that circulating tumour-derived sST2, an IL-33 decoy receptor, delayed the growth and progression of colorectal cancer cells by inhibiting Th1/Th2 polarization, macrophage infiltration and angiogenesis.
IL-33 protects from recurrent C. difficile infection by restoration of humoral immunity
Clostridioides difficile infection (CDI) recurs in 1 of 5 patients. Monoclonal antibodies targeting the virulence factor TcdB reduce disease recurrence, suggesting that an inadequate anti-TcdB response to CDI leads to recurrence. In patients with CDI, we discovered that IL-33 measured at diagnosis predicts future recurrence, leading us to test the role of IL-33 signaling in the induction of humoral immunity during CDI. Using a mouse recurrence model, IL-33 was demonstrated to be integral for anti-TcdB antibody production. IL-33 acted via ST2+ ILC2 cells, facilitating germinal center T follicular helper (GC-Tfh) cell generation of antibodies. IL-33 protection from reinfection was antibody-dependent, as μMT KO mice and mice treated with anti-CD20 mAb were not protected. These findings demonstrate the critical role of IL-33 in generating humoral immunity to prevent recurrent CDI.