Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
217 result(s) for "Interleukin-11 - metabolism"
Sort by:
Interleukin-11 alters placentation and causes preeclampsia features in mice
Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal–fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE.
Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway
Cancer-associated fibroblasts (CAF) are recognized as one of the key determinants in the malignant progression of lung adenocarcinoma. And its contributions to chemoresistance acquisition of lung cancer has raised more and more attention. In our study, cancer associated fibroblasts treated with cisplatin conferred chemoresistance to lung cancer cells. Meanwhile, Interleukin-11(IL-11) was significantly up-regulated in the CAF stimulated by cisplatin. As confirmed in lung adenocarcinoma cells in vivo and in vitro , IL-11 could protect cancer cells from cisplatin-induced apoptosis and thus promote their chemoresistance. Furthermore, it was also observed that IL-11 induced STAT3 phosphorylation and increased anti-apoptotic protein Bcl-2 and Survivin expression in cancer cells. The effect could be abrogated by suppressing STAT3 phosphorylation or silencing IL-11Rα expression in cancer cells. In conclusion, chemotherapy-induced IL-11 upregulation in CAF promotes lung adenocarcinoma cell chemoresistance by activating IL-11R/STAT3 anti-apoptotic signaling pathway.
Inhibition of IL-11 signalling extends mammalian healthspan and lifespan
For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark 1 – 7 . Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK–AMPK–mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies. Deletion of Il11 or Il11ra1 protects against metabolic decline, multi-morbidity and frailty in old age. Administration of anti-IL-11 to 75-week-old mice for 25 weeks improves metabolism and muscle function, and reduces ageing biomarkers and frailty across sexes. In lifespan studies, genetic deletion of Il11 extended the lives of mice of both sexes, by 24.9% on average. Treatment with anti-IL-11 from 75 weeks of age until death extends the median lifespan of male mice by 22.5% and of female mice by 25%. Together, these results demonstrate a role for the pro-inflammatory factor IL-11 in mammalian healthspan and lifespan. We suggest that anti-IL-11 therapy, which is currently in early-stage clinical trials for fibrotic lung disease, may provide a translational opportunity to determine the effects of IL-11 inhibition on ageing pathologies in older people. IL-11 is identified as a key regulator of ERK–AMPK–mTORC1 signalling, metabolism, inflammation and age-related disease and lifespan in mouse and human.
Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.
Generation of Soluble Interleukin-11 and Interleukin-6 Receptors: A Crucial Function for Proteases during Inflammation
The cytokines interleukin-11 (IL-11) and IL-6 are important proteins with well-defined pro- and anti-inflammatory functions. They activate intracellular signaling cascades through a homodimer of the ubiquitously expressed signal-transducing β-receptor glycoprotein 130 (gp130). Specificity is gained through the cell- and tissue-specific expression of the nonsignaling IL-11 and IL-6 α-receptors (IL-11R and IL-6R), which determine the responsiveness of the cell to these two cytokines. IL-6 is a rare example, where its soluble receptor (sIL-6R) has agonistic properties, so that the IL-6/sIL-6R complex is able to activate cells that are usually not responsive to IL-6 alone (trans-signaling). Recent evidence suggests that IL-11 can signal via a similar trans-signaling mechanism. In this review, we highlight similarities and differences in the functions of IL-11 and IL-6. We summarize current knowledge about the generation of the sIL-6R and sIL-11R by different proteases and discuss possible roles during inflammatory processes. Finally, we focus on the selective and/or combined inhibition of IL-6 and IL-11 signaling and how this might translate into the clinics.
Two N-Linked Glycans Differentially Control Maturation, Trafficking and Proteolysis, but not Activity of the IL-11 Receptor
Background/Aims: The cytokine interleukin-11 (IL-11) has important pro- and anti-inflammatory functions. It activates its target cells through binding to the IL-11 receptor (IL-11R), and the IL-11/IL-11R complex recruits a homodimer of glycoprotein 130 (gp130). N-linked glycosylation, a post-translational modification where complex oligosaccharides are attached to the side chain of asparagine residues, is often important for stability, folding and biological function of cytokine receptors. Methods: We generated different IL-11R mutants via site-directed mutagenesis and analyzed them in different cell lines via Western blot, flow cytometry, confocal microscopy and proliferation assays. Results: In this study, we identified two functional N-glycosylation sites in the D2 domain of the IL-11R at N127 and N194. While mutation of N127Q only slightly affects cell surface expression of the IL-11R, mutation of N194Q broadly prevents IL-11R appearance at the plasma membrane. Accordingly, IL-11R mutants lacking N194 are retained within the ER, whereas the N127 mutant is transported through the Golgi complex to the cell surface, uncovering a differential role of the two N-glycan sequons for IL-11R maturation. Interestingly, IL-11R mutants devoid of one or both N-glycans are still biologically active. Furthermore, the IL-11RN127Q/N194Q mutant shows no inducible shedding by ADAM10, but is rather constitutively released into the supernatant. Conclusion: Our results show that the two N-glycosylation sites differentially influence stability and proteolytic processing of the IL-11R, but that N-linked glycosylation is not a prerequisite for IL-11 signaling.
Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer
Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11 + ) cells are not fully understood. To characterize IL-11 + cells in vivo, we generate Il11 reporter mice. IL-11 + cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11 + cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11 + fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11 + fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment. The stromal fibroblast population in the colon is composed of heterogeneous and distinct cell subtypes that play a crucial role in the development of colitis and colon cancer. Here the authors generate IL-11 reporter mice and characterize the origin and phenotype of inflammatory IL-11 + fibroblasts in colitis and colon cancer preclinical models.
Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH
IL11 is important for fibrosis in non-alcoholic steatohepatitis (NASH) but its role beyond the stroma in liver disease is unclear. Here, we investigate the role of IL11 in hepatocyte lipotoxicity. Hepatocytes highly express IL11RA and secrete IL11 in response to lipid loading. Autocrine IL11 activity causes hepatocyte death through NOX4-derived ROS, activation of ERK, JNK and caspase-3, impaired mitochondrial function and reduced fatty acid oxidation. Paracrine IL11 activity stimulates hepatic stellate cells and causes fibrosis. In mouse models of NASH, hepatocyte-specific deletion of Il11ra1 protects against liver steatosis, fibrosis and inflammation while reducing serum glucose, cholesterol and triglyceride levels and limiting obesity. In mice deleted for Il11ra1 , restoration of IL11 cis-signaling in hepatocytes reconstitutes steatosis and inflammation but not fibrosis. We found no evidence for the existence of IL6 or IL11 trans-signaling in hepatocytes or NASH. These data show that IL11 modulates hepatocyte metabolism and suggests a mechanism for NAFLD to NASH transition. IL11 contributes to the development of non-alcoholic steatohepatitis (NASH) through incompletely understood mechanisms. Here, the authors report that lipotoxicity-driven autocrine IL11 activity underlies hepatocyte metabolic dysfunction and death via a NOX4/ERK-mediated mechanism while paracrine IL11 activity stimulates hepatic stellate cells contributing to fibrosis and inflammation in the context of NASH.
IL-11 is a crucial determinant of cardiovascular fibrosis
Fibroblast-specific Il-11 expression causes heart and kidney fibrosis and organ failure, whereas IL-11 inhibition prevents fibroblast activation and organ fibrosis, indicating that IL-11 inhibition is a potential therapeutic strategy to treat fibrotic diseases. Protein behind cardiovascular fibrosis Fibrosis—the overproduction of fibrous connective tissue—is a feature of many diseases and can contribute to pathology by causing scarring, thickening of tissue and interference with normal organ function. In the heart, fibrosis can cause mechanical and electrical dysfunction. Stuart Cook and colleagues identify a protein that has a crucial role in cardiac fibrosis: the cytokine IL-11. They find that, in primary human cardiac fibroblasts, transcription of IL-11 is a dominant response to transforming growth factor beta (TGFβ) exposure and that it is required for the pro-fibrotic effect of TGFβ. Loss of IL-11 reduced fibrosis in three preclinical models of cardiovascular fibrosis, leading the authors to propose IL-11 as a therapeutic target. Fibrosis is a common pathology in cardiovascular disease 1 . In the heart, fibrosis causes mechanical and electrical dysfunction 1 , 2 and in the kidney, it predicts the onset of renal failure 3 . Transforming growth factor β1 (TGFβ1) is the principal pro-fibrotic factor 4 , 5 , but its inhibition is associated with side effects due to its pleiotropic roles 6 , 7 . We hypothesized that downstream effectors of TGFβ1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging–genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFβ1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.
Expression, Purification, and Characterization of Interleukin-11 Orthologues
Interleukin-11 (IL-11) is a multifunctional cytokine implicated in several normal and pathological processes. The decoding of IL-11 function and development of IL-11-targeted drugs dictate the use of laboratory animals and need of the better understanding of species specificity of IL-11 signaling. Here, we present a method for the recombinant interleukin-11 (rIL-11) production from the important model animals, mouse and macaque. The purified mouse and macaque rIL-11 interact with extracellular domain of human IL-11 receptor subunit α and activate STAT3 signaling in HEK293 cells co-expressing human IL-11 receptors with efficacies resembling those of human rIL-11. Hence, the evolutionary divergence does not impair IL-11 signaling. Furthermore, compared to human rIL-11 its macaque orthologue is 8-fold more effective STAT3 activator, which favors its use for treatment of thrombocytopenia as a potent substitute for human rIL-11. Compared to IL-6, IL-11 signaling exhibits lower species specificity, likely due to less conserved intrinsic disorder propensity within IL-6 orthologues. The developed express method for preparation of functionally active macaque/mouse rIL-11 samples is suited for exploration of the molecular mechanisms underlying IL-11 action and for development of the drug candidates for therapy of oncologic/hematologic/inflammatory diseases related to IL-11 signaling.