Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,280
result(s) for
"Interleukin-13 - immunology"
Sort by:
Two Phase 3 Trials of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis
by
Guttman-Yassky, Emma
,
Blauvelt, Andrew
,
Gontijo Lima, Renata
in
Adolescent
,
Adolescents
,
Adult
2023
Lebrikizumab, a high-affinity IgG4 monoclonal antibody targeting interleukin-13, prevents the formation of the interleukin-4Rα-interleukin-13Rα1 heterodimer receptor signaling complex.
We conducted two identically designed, 52-week, randomized, double-blind, placebo-controlled, phase 3 trials; both trials included a 16-week induction period and a 36-week maintenance period. Eligible patients with moderate-to-severe atopic dermatitis (adults [≥18 years of age] and adolescents [12 to <18 years of age, weighing ≥40 kg]) were randomly assigned in a 2:1 ratio to receive either lebrikizumab at a dose of 250 mg (loading dose of 500 mg at baseline and week 2) or placebo, administered subcutaneously every 2 weeks. Outcomes for the induction period were assessed up to 16 weeks and are included in this report. The primary outcome was an Investigator's Global Assessment (IGA) score of 0 or 1 (indicating clear or almost clear skin; range, 0 to 4 [severe disease]) with a reduction (indicating improvement) of at least 2 points from baseline at week 16. Secondary outcomes included a 75% improvement in the Eczema Area and Severity Index score (EASI-75 response) and assessments of itch and of itch interference with sleep. Safety was also assessed.
In trial 1, the primary outcome was met in 43.1% of 283 patients in the lebrikizumab group and in 12.7% of 141 patients in the placebo group (P<0.001); an EASI-75 response occurred in 58.8% and 16.2%, respectively (P<0.001). In trial 2, the primary outcome was met in 33.2% of 281 patients in the lebrikizumab group and in 10.8% of 146 patients in the placebo group (P<0.001); an EASI-75 response occurred in 52.1% and 18.1%, respectively (P<0.001). Measures of itch and itch interference with sleep indicated improvement with lebrikizumab therapy. The incidence of conjunctivitis was higher among patients who received lebrikizumab than among those who received placebo. Most adverse events during the induction period were mild or moderate in severity and did not lead to trial discontinuation.
In the induction period of two phase 3 trials, 16 weeks of treatment with lebrikizumab was effective in adolescents and adults with moderate-to-severe atopic dermatitis. (Funded by Dermira; ADvocate1 and ADvocate2 ClinicalTrials.gov numbers, NCT04146363 and NCT04178967, respectively.).
Journal Article
Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes
2018
Interleukin (IL)-4 and IL-13 are related cytokines that regulate many aspects of allergic inflammation. They play important roles in regulating the responses of lymphocytes, myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces the differentiation of naïve CD4 T cells into Th2 cells, in B cells, IL-4 drives the immunoglobulin (Ig) class switch to IgG1 and IgE, and in macrophages, IL-4 and IL-13 induce alternative macrophage activation. This review gives a short insight into the functional formation of these cytokine receptors. I will discuss both the binding kinetics of ligand/receptor interactions and the expression of the receptor chains for these cytokines in various cell types; both of which are crucial factors in explaining the efficiency by which these cytokines induce intracellular signaling and gene expression. Work initiated in part by William (Bill) E. Paul on IL-4 some 30 years ago has now grown into a major building block of our current understanding of basic immunology and the immune response. This knowledge on IL-4 has growing clinical importance, as therapeutic approaches targeting the cytokine and its signal transduction are becoming a part of the clinical practice in treating allergic diseases. Just by reading the reference list of this short review, one can appreciate the enormous input Bill has had on shaping our understanding of the pathophysiology of allergic inflammation and in particular the role of IL-4 in this process.
Journal Article
Lebrikizumab Treatment in Adults with Asthma
by
Corren, Jonathan
,
Wu, Lawren C
,
Arron, Joseph R
in
Adult
,
Antibodies, Monoclonal - adverse effects
,
Antibodies, Monoclonal - pharmacology
2011
In this trial, patients with poorly controlled asthma despite inhaled glucocorticoid therapy were treated with lebrikizumab, an anti–IL-13 monoclonal antibody. Lebrikizumab was associated with improvement in FEV
1
overall, with greater improvements in patients with a positive IL-13 signature.
Asthma is a complex disease with marked heterogeneity in the clinical course and in the response to treatment.
1
–
9
Variability in the type of airway inflammation may underlie this heterogeneity.
2
–
5
Despite treatment with inhaled glucocorticoids, many patients continue to have uncontrolled asthma that requires more intensive therapy.
10
Interleukin-13, a pleiotropic cytokine of type 2 helper T cells (Th2), has been thought to contribute to many key features of asthma.
11
Production of interleukin-13 is inhibited by inhaled glucocorticoids, but these agents also have many other effects on the airways. Some patients with uncontrolled asthma continue to have elevated levels of . . .
Journal Article
Effects of Interleukin-13 Blockade on Allergen-induced Airway Responses in Mild Atopic Asthma
2011
Extensive evidence in animal models supports a role for IL-13 in the pathobiology of asthma. IMA-638 and IMA-026 are fully humanized IgG(1) antibodies that bind to different epitopes and neutralize IL-13 bioactivity.
We hypothesized that anti-IL-13 treatment would inhibit allergen-induced late-phase asthmatic responses, airway hyperresponsiveness, and inflammation in subjects with asthma.
Fifty-six subjects with mild, atopic asthma were recruited for two double-blind, randomized, placebo-controlled, parallel group trials to compare IMA-638 and IMA-026 IL-13 antibody treatments with placebo treatment. Drug was administered on Days 1 and 8, and allergen challenges were performed on Days 14 and 35. The primary outcome variable was the late-phase area under the curve (AUC), and secondary outcome variables were the early- and late-phase maximum percent fall in FEV(1), early AUC, allergen-induced shift in airway hyperresponsiveness, and sputum eosinophils.
The treatment difference with IMA-638 on Day 14 was -19.1 FEV(1) × hour (95% confidence interval: -36.2, -1.9) for the allergen-induced early AUC and -23.8 FEV(1) × hour (95% confidence interval: -46.4, -1.2) for the late AUC (both P < 0.05), but this effect was lost by Day 35. Treatment with IMA-026 did not attenuate the asthmatic responses on Day 14 or Day 35. There was no effect of either antibody on allergen-induced airway hyperresponsiveness or sputum eosinophils. The frequency of adverse events after administration of the IL-13 antibodies was similar to placebo.
IL-13 has a role in allergen-induced airway responses in humans. Further study is required to determine whether anti-IL-13 monoclonal antibodies will be beneficial clinically.
Journal Article
A first‐in‐human, single and multiple dose study of lunsekimig, a novel anti‐TSLP/anti‐IL‐13 NANOBODY® compound, in healthy volunteers
2024
Lunsekimig is a novel, bispecific NANOBODY® molecule that inhibits both thymic stromal lymphopoietin (TSLP) and interleukin (IL)‐13, two key mediators of asthma pathophysiology. In this first‐in‐human study, we evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of lunsekimig in healthy adult participants. Participants received single ascending doses (SAD) of lunsekimig (10–400 mg intravenous [IV] or 400 mg subcutaneous [SC]) (SAD part) or multiple ascending doses (MAD part) of lunsekimig (100 or 200 mg, every 2 weeks [Q2W] for three SC doses), or placebo. Overall, 48 participants were randomized 3:1 in the SAD part and 4:1 in the MAD part for lunsekimig or placebo. The primary endpoint was safety and tolerability. The secondary endpoints included PK, antidrug antibodies (ADAs) and total target measurement. Lunsekimig was well tolerated and common treatment‐emergent adverse events were COVID‐19, nasopharyngitis, injection site reactions, and headache. Lunsekimig showed dose‐proportional increases in exposure and linear elimination. Mean t1/2z of lunsekimig was around 10 days across all IV and SC doses of the SAD and MAD parts of the study. Increases in the serum concentration of total TSLP and IL‐13 for lunsekimig versus placebo indicated target engagement. ADA of low titers were detected in four (11.1%) participants who received lunsekimig in the SAD, and seven (43.8%) in the MAD. In conclusion, lunsekimig was well tolerated in healthy participants with a linear PK profile up to single 400 mg IV and SC dose and multiple doses of 100 and 200 mg SC Q2W, with low immunogenicity.
Journal Article
IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3
2019
Intestinal stem cells (ISCs) are maintained by stemness signaling for precise modulation of self-renewal and differentiation under homeostasis. However, the way in which intestinal immune cells regulate the self-renewal of ISCs remains elusive. Here we found that mouse and human Lgr5
+
ISCs showed high expression of the immune cell–associated circular RNA circPan3 (originating from the
Pan3
gene transcript). Deletion of circPan3 in Lgr5
+
ISCs impaired their self-renewal capacity and the regeneration of gut epithelium in a manner dependent on immune cells. circPan3 bound mRNA encoding the cytokine IL-13 receptor subunit IL-13Rα1 (
Il13ra1
) in ISCs to increase its stability, which led to the expression of IL-13Rα1 in ISCs. IL-13 produced by group 2 innate lymphoid cells in the crypt niche engaged IL-13Rα1 on crypt ISCs and activated signaling mediated by IL-13‒IL-13R, which in turn initiated expression of the transcription factor Foxp1. Foxp1 is associated with β-catenin in rendering its nuclear translocation, which caused activation of the β-catenin pathway and the maintenance of Lgr5
+
ISCs.
Fan and colleagues show that circular RNA circPan3 controls expression of the cytokine receptor IL-13Rα1 on intestinal stem cells and, thus, the renewal of those cells in response to IL-13 derived from group 2 innate lymphoid cells.
Journal Article
Role of Interleukin-13 in Asthma
Interleukin-13 is a pleiotropic TH2 cytokine that has been shown to be central to the pathogenesis of asthma. Some of the most prominent of the effects of IL-13 include increases in goblet cell differentiation, activation of fibroblasts, elevation of bronchial hyperresponsiveness, and switching of B cell antibody production from IgM to IgE. The relevances of these effects to asthma have been carefully studied in both animal models and more recently in human studies. As the role of IL-13 in asthma has become more defined, a number of potential biomarkers for TH2 airway inflammation, and hence IL-13 activity, have been identified, including blood and sputum eosinophils, total serum IgE, proteins derived from the bronchial epithelium (e.g., serum periostin), and exhaled nitric oxide. Most importantly, many of these markers for TH2 inflammation are strong predictors for positive responses to inhaled corticosteroid treatment. These biomarkers may also be useful in identifying patients who are most likely to benefit from specific IL-13 antagonism, as was demonstrated in a recent clinical trial of anti-IL-13 antibody therapy (lebrikizumab) in patients with poorly controlled asthma despite using inhaled corticosteroids. In that study, significant improvements in FEV1 were observed in patients with elevations of serum periostin but not in patients with normal periostin levels. These data indicate that IL-13 antagonists may fulfill an important unmet need in patients with poorly controlled asthma and biologic evidence of persistent IL-13 activity.
Journal Article
Therapeutic Targeting of the Interleukin-4/Interleukin-13 Signaling Pathway: In Allergy and Beyond
2018
Inflammation triggered by interleukin-4 (IL-4)/IL-13 is mediated by IL-4 and IL-13 receptors that are present on multiple cell types, including epithelial cells, smooth muscle, fibroblasts endothelial cells and immune cells. IL-4 exerts its activities by interacting with two specific cell surface receptors: one designated the type 1 IL-4 receptor (IL-4R); the other designated the type 2 IL-4R, a receptor complex that is also the functional receptor for IL-13. “Traditionally,” IL-4 and IL-13 have been studied in the context of T helper 2-associated immune responses (i.e., type 2 immunity). In these settings, IL-4, IL-13 and their cognate receptor chains display pivotal roles where IL-4 is considered an instigator of type 2 immune responses and IL-13 an effector molecule. Thus, therapeutic targeting of the IL-4/IL-13 pathway is under extensive research, mainly for the treatment of allergic diseases. Nonetheless, in addition to IL-4’s and IL-13’s roles in type 2 immune responses, recent data highlight key activities for IL-4 and IL-13 in additional settings including metabolism, bone resorption, and even cognitive learning. This review summarizes the established knowledge that has accumulated regarding the roles of IL-4, IL-13, and their receptors in allergic diseases, with an emphasis on asthma, atopic dermatitis and eosinophilic esophagitis. Further, we provide an overview of the pharmacological entities targeting these cytokines and/or their receptors, which have been developed and clinically examined over the years. Finally, we will briefly highlight emerging evidence of potential new roles for IL-4 and IL-13 in other pathologies.
Journal Article
Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis
by
Kamm, Michael A.
,
Guenther, Thomas
,
Knight, Stella C.
in
Acute Disease
,
Adrenal Cortex Hormones - therapeutic use
,
Adult
2010
BackgroundIn ulcerative colitis (UC) gut bacteria drive inflammation. Bacterial recognition and T-cell responses are shaped by intestinal dendritic cells (DCs); therapeutic effects of probiotic bacteria may relate to modulation of intestinal DC. The probiotic mixture, VSL#3, increases interleukin (IL)-10 and downregulates IL-12p40 production by DC in vitro. We evaluated in vivo effects of oral VSL#3 and steroids on colonic DC in patients with acute UC.MethodsRectal biopsies were obtained from patients with active UC before and after treatment with VSL#3, corticosteroids, or placebo, and from healthy controls. Myeloid colonic DC were studied from freshly isolated lamina propria cells using multicolor flow cytometry. Surface expression of activation markers, CD40, CD86, pattern recognition receptors, Toll-like receptor (TLR)-2 and TLR-4 were assessed. Changed function was measured from ongoing intracellular IL-10, IL-12p40, IL-6, and IL-13 production.ResultsAcute UC colonic myeloid DC were producing more IL-10 and IL-12p40 than control DC (P = 0.01). In VSL#3-treated patients DC TLR-2 expression decreased (P < 0.05), IL-10 production increased and IL-12p40 production decreased (P < 0.005); 10/14 patients on VSL#3 showed a clinical response. Corticosteroids also resulted in increased IL-10 and reduced IL-12p40 production by DC. Conversely, in patients on placebo, TLR-2 expression and intensity of staining for IL-12p40 and IL-6 increased (all P < 0.05); 5/14 patients on placebo showed a clinical response (P = NS).ConclusionsDespite small numbers of human colonic DC available, we showed that treatment of UC patients with probiotic VSL#3 and corticosteroids induced “favorable” intestinal DC function in vivo, increasing regulatory cytokines and lowering proinflammatory cytokines and TLR expression. These effects may contribute to therapeutic benefit. (Inflamm Bowel Dis 2010)
Journal Article
Simvastatin up-regulates adenosine deaminase and suppresses osteopontin expression in COPD patients through an IL-13-dependent mechanism
by
Wongkajornsilp, Adisak
,
Maneechotesuwan, Kittipong
,
Barnes, Peter J.
in
5'-Nucleotidase - metabolism
,
Adenosine Deaminase - metabolism
,
Aged
2016
Background
Adenosine deaminase (ADA) and osteopontin (OPN) may play opposing roles in the pathogenesis of COPD. Deficiency of ADA results in enhanced adenosine signaling which up-regulates OPN expression. Although statins suppress OPN in cancer cells, little is known about their effects on ADA and OPN in COPD patients.
Methods
We extended a previous randomized double-blind placebo crossover study to investigate the effects of simvastatin (20 mg/day) on sputum ADA and OPN expression and explored the underlying signaling pathways involved by conducting in vitro experiments with cigarette smoke extract (CSE)-treated monocyte-derived macrophages (MDM) from COPD patients and healthy subjects.
Results
Simvastatin decreased sputum IL-13, OPN and CD73, while increasing ADA expression, irrespective of inhaled corticosteroid treatment and smoking status in parallel to increased inosine levels. The degree of simvastatin-restored ADA activity was significantly correlated with the magnitude of changes in pre-bronchodilator FEV
1
. Mechanistic exploration showed that CSE enhanced the expression of IL-13, which induced an increase in OPN and inhibited ADA mRNA accumulation in MDM from COPD patients but not healthy subjects through a STAT6-dependent mechanism. Simvastatin treatment inhibited IL-13 transcription in a dose-dependent manner, and therefore diminished the IL-13-induced increase in OPN and restored IL-13-suppressed ADA. There was no effect of simvastatin on adenosine receptors in CSE-stimulated MDM, indicating that its effects were on the adenosine pathway.
Conclusion
Simvastatin reversed IL-13-suppressed ADA activity that leads to the down-regulation of adenosine signaling and therefore inhibits OPN expression through the direct inhibition of IL-13-activated STAT6 pathway. Inhibition of IL-13 may reverse the imbalance between ADA and OPN in COPD and therefore may prevent COPD progression.
Journal Article