Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
286
result(s) for
"Interleukin-23 - pharmacology"
Sort by:
The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
by
Safavi, Farinaz
,
Ciric, Bogoljub
,
Zhang, Guang-Xian
in
Animals
,
Antibodies - immunology
,
Antibodies - pharmacology
2011
Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) require exposure to IL-23 to become encephalitogenic, but the mechanism by which IL-23 promotes their pathogenicity is not known. Here we found that IL-23 induced production of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in T(H)17 cells and that GM-CSF had an essential role in their encephalitogenicity. Our findings identify a chief mechanism that underlies the important role of IL-23 in autoimmune diseases. IL-23 induced a positive feedback loop whereby GM-CSF secreted by T(H)17 cells stimulated the production of IL-23 by antigen-presenting cells. Such cross-regulation of IL-23 and GM-CSF explains the similar pattern of resistance to autoimmunity when either of the two cytokines is absent and identifies T(H)17 cells as a crucial source of GM-CSF in autoimmune inflammation.
Journal Article
Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes
by
Ouyang, Wenjun
,
Eidenschenk, Celine
,
van Bruggen, Nicholas
in
631/250/347
,
Adipose tissue
,
Adipose Tissue, White - drug effects
2014
In pre-clinical mouse models, the interleukin-22 pathway is identified as a novel target for therapeutic intervention in metabolic diseases.
Metabolic diseases reversed by interleukin-22
Interleukin-22 (IL-22) promotes antimicrobial immunity and acts to maintain the integrity of the intestinal mucosal barrier. This study examines the connection between IL-22 and metabolic syndrome, and shows that the IL-22 pathway is indispensable for maintaining epithelial integrity, reducing chronic inflammation, and alleviating metabolic disorders in mouse models of genetic or diet-induced obesity. Administration of IL-22 can reverse the disease progression through multiple pathways, suggesting novel therapeutic strategies for the treatment of human metabolic diseases.
The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established
1
,
2
. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome
3
,
4
,
5
. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine
6
,
7
. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4
+
T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with
Citrobacter rodentium
. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to
C. rodentium
infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (
db/db
) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.
Journal Article
Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling
by
McGeachy, Mandy J
,
Wei, Lai
,
Grainger, John R
in
Animals
,
Autoimmune Diseases - immunology
,
Autoimmune Diseases - pathology
2010
CD4(+) T-helper cells that selectively produce interleukin (IL)-17 (T(H)17), are critical for host defence and autoimmunity. Although crucial for T(H)17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been proposed to be the factors responsible for initiating specification. Here we show that T(H)17 differentiation can occur in the absence of TGF-β signalling. Neither IL-6 nor IL-23 alone efficiently generated T(H)17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naive precursors, independently of TGF-β. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed RORγt (encoded by Rorc) and T-bet. T-bet(+)RORγt(+) T(H)17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred T(H)17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data indicate an alternative mode for T(H)17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.
Journal Article
Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis
by
Zheng, Yan
,
Eastham-Anderson, Jeffrey
,
Ouyang, Wenjun
in
Animals
,
Autoimmune Diseases - immunology
,
Autoimmune Diseases - pathology
2007
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of the epidermis (acanthosis), infiltration of leukocytes into both the dermis and epidermis, and dilation and growth of blood vessels. The underlying cause of the epidermal acanthosis in psoriasis is still largely unknown. Recently, interleukin (IL)-23, a cytokine involved in the development of IL-17-producing T helper cells (T(H)17 cells), was found to have a potential function in the pathogenesis of psoriasis. Here we show that IL-22 is preferentially produced by T(H)17 cells and mediates the acanthosis induced by IL-23. We found that IL-23 or IL-6 can directly induce the production of IL-22 from both murine and human naive T cells. However, the production of IL-22 and IL-17 from T(H)17 cells is differentially regulated. Transforming growth factor-beta, although crucial for IL-17 production, actually inhibits IL-22 production. Furthermore, IL-22 mediates IL-23-induced acanthosis and dermal inflammation through the activation of Stat3 (signal transduction and activators of transcription 3) in vivo. Our results suggest that T(H)17 cells, through the production of both IL-22 and IL-17, might have essential functions in host defence and in the pathogenesis of autoimmune diseases such as psoriasis. IL-22, as an effector cytokine produced by T cells, mediates the crosstalk between the immune system and epithelial cells.
Journal Article
Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease
2016
Background
The IL23/Th17 pathway is essential for the onset of inflammatory bowel disease (IBD), yet the specific mechanism by which this pathway initiates the disease remains unknown. In this study, we identify the mechanisms that mediate cross-talk between the IL23 pathway and the intestinal barrier in IBD.
Results
The downstream targets of the IL23 pathway were identified by RNA array profiling and confirmed by immunohistochemical staining. The role of miRNAs that interact with IL23 was explored in mice with TNBS-induced colitis. Claudin-8 (CLDN8), a multigene family protein that constitutes the backbone of tight junctions, was identified as a novel target of IL23 in IBD. CLDN8 was significantly downregulated in IBD patients with inflamed colonic mucosa, and in trinitrobenzene sulphonic acid (TNBS) induced colitis in mice. Therapeutic treatment of colitis in mice using an IL23 antibody restored CLDN8 abundance, in parallel with recovery from colitis. In addition, we identify miR-223 as a novel mediator of the crosstalk between the IL23 signal pathway and CLDN8 in the development of IBD. MiR-223 was upregulated in IBD, and its activity was regulated through the IL23 pathway. Antagomir inhibition of miR-223 reactivated CLDN8 and improved a number of signs associated with TNBS-induced colitis in mice.
Conclusions
Our study characterizes a new mechanistic pathway in IBD, in which miR-223 interacts with the IL23 pathway by targeting CLDN8. Strategies designed to disrupt this interaction may provide novel therapeutic agents for the management of IBD.
Journal Article
Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation
2016
Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6C
hi
blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.
Imiquimod exacerbates IL-23-induced skin inflammation and models psoriasis in mice. Here the authors show that this pathology is not dependent on resident dendritic cells, but on CCR6-induced immigration of monocyte-derived cells.
Journal Article
IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease
2008
Background:A novel T helper (Th) cell lineage, Th17, that exclusively produces the proinflammatory cytokine interleukin 17 (IL17) has been reported to play important roles in various inflammatory diseases. IL23 is also focused upon for its potential to promote Th17. Here, the roles of the IL23/IL17 axis in inflammatory bowel diseases such as ulcerative colitis (UC) and Crohn’s disease (CD) were investigated.Methods:Mucosal samples were obtained from surgically resected specimens (controls, n = 12; UC, n = 17; CD, n = 22). IL17 production by isolated peripheral blood (PB) and lamina propria (LP) CD4+ cells was examined. Quantitative PCR amplification was performed to determine the mRNA expression levels of IL17, interferon γ (IFNγ), IL23 receptor (IL23R) and retinoic acid-related orphan receptor γ (RORC) in LP CD4+ cells, and IL12 family members, such as IL12p40, IL12p35 and IL23p19, in whole mucosal specimens. The effects of exogenous IL23 on IL17 production by LP CD4+ cells were also examined.Results:IL17 production was higher in LP CD4+ cells than in PB. Significant IL17 mRNA upregulation in LP CD4+ cells was found in UC, while IFNγ was increased in CD. IL23R and RORC were upregulated in LP CD4+ cells isolated from both UC and CD. IL17 production was significantly increased by IL23 in LP CD4+ cells from UC but not CD. Upregulated IL23p19 mRNA expression was correlated with IL17 in UC and IFNγ in CD.Conclusions:IL23 may play important roles in controlling the differential Th1/Th17 balance in both UC and CD, although Th17 cells may exist in both diseases.
Journal Article
IL-9 induces differentiation of TH17 cells and enhances function of FoxP3⁺ natural regulatory T cells
by
Uyttenhove, Catherine
,
Kuchroo, Vijay K
,
Oukka, Mohamed
in
Amino Acid Sequence
,
Animals
,
Biological Sciences
2009
The development of T helper (TH)17 and regulatory T (Treg) cells is reciprocally regulated by cytokines. Transforming growth factor (TGF)-β alone induces FoxP3⁺ Treg cells, but together with IL-6 or IL-21 induces TH17 cells. Here we demonstrate that IL-9 is a key molecule that affects differentiation of TH17 cells and Treg function. IL-9 predominantly produced by TH17 cells, synergizes with TGF-β1 to differentiate naïve CD4⁺ T cells into TH17 cells, while IL-9 secretion by TH17 cells is regulated by IL-23. Interestingly, IL-9 enhances the suppressive functions of FoxP3⁺ CD4⁺ Treg cells in vitro, and absence of IL-9 signaling weakens the suppressive activity of nTregs in vivo, leading to an increase in effector cells and worsening of experimental autoimmune encephalomyelitis. The mechanism of IL-9 effects on TH17 and Tregs is through activation of STAT3 and STAT5 signaling. Our findings highlight a role of IL-9 as a regulator of pathogenic versus protective mechanisms of immune responses.
Journal Article
Microbiota-derived proteins synergize with IL-23 to drive IL22 production in model type 3 innate lymphoid cells
by
Allan, David S. J.
,
Wang, Yanling
,
Gewirtz, Andrew T.
in
Analysis
,
Animals
,
Bacterial proteins
2025
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3
ex vivo
. Hence, we, herein, examined the response of the ILC3 cell line, MNK-3, to microbial metabolites
in vitro
. We observed that fecal supernatants (FS), by themselves, elicited modest levels of IL-22 and synergized with IL-23 to drive robust IL-22 production assayed by qRT-PCR and ELISA. The IL-22 synergistic activity of FS was not mimicked by an array of candidate microbial metabolites but could be attributed to bacterial proteins. Examining how MNK3 cells exposed to IL-23, FS, both, or neither via RNA-seq and immunoblotting indicated that FS activated MNK-3 cells in a distinct pattern from IL-23: FS activates p-38 MAPK while IL-23 activates STAT3 signaling pathways. Collectively, these studies indicate ILC3 sensing of microbiota proteins promotes IL-22 production suggesting the possibility of manipulating microbiota to increase IL-22 without risk of IL-23-mediated chronic inflammatory diseases.
Journal Article
Foxp3+ Regulatory T Cells of Psoriasis Patients Easily Differentiate into IL-17A-Producing Cells and Are Found in Lesional Skin
by
Jorn Bovenschen, H.
,
van de Kerkhof, Peter C.
,
Joosten, Irma
in
Biological and medical sciences
,
Biopsy
,
CD4 Antigens - metabolism
2011
Psoriasis is an autoimmune-related chronic inflammatory skin disease that is strongly associated with IL-23 and T helper-17 (Th17) effector cytokines. In addition, CD4+CD25high regulatory T-cell (Treg) function appeared to be impaired in psoriasis. CD4+CD25highFoxp3+ Tregs are typically considered inhibitors of autoimmune responses. However, under proinflammatory conditions, Tregs can differentiate into inflammation-associated Th17 cells—a paradigm shift, with as yet largely unknown consequences for human disease initiation or progression. Th17 cells are highly proinflammatory T cells that are characterized by IL-17A and IL-22 production and expression of the transcription factor retinoic acid-related orphan receptor γt (RORγt). We here show that Tregs of patients with severe psoriasis, as compared with those of healthy controls, have an enhanced propensity to differentiate into IL-17A-producing cells on ex vivo stimulation. This enhanced Treg differentiation was linked to unexpectedly high RORγt levels and enhanced loss of Foxp3. Notably, IL-23 boosted this Treg differentiation process particularly in patients with psoriasis but less so in controls. IL-23 further reduced Foxp3 expression while leaving the high RORγt levels unaffected. The histone/protein deacetylase inhibitor, Trichostatin-A, prevented Th17 differentiation of Tregs in psoriasis patients. Importantly, IL-17A+/Foxp3+/CD4+ triple-positive cells were present in skin lesions of patients with severe psoriasis. These data stress the clinical relevance of Treg differentiation for the perpetuation of chronic inflammatory disease and may pave novel ways for immunotherapy.
Journal Article