Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
118 result(s) for "Interleukin-4 Receptor alpha Subunit - immunology"
Sort by:
Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes
Interleukin (IL)-4 and IL-13 are related cytokines that regulate many aspects of allergic inflammation. They play important roles in regulating the responses of lymphocytes, myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces the differentiation of naïve CD4 T cells into Th2 cells, in B cells, IL-4 drives the immunoglobulin (Ig) class switch to IgG1 and IgE, and in macrophages, IL-4 and IL-13 induce alternative macrophage activation. This review gives a short insight into the functional formation of these cytokine receptors. I will discuss both the binding kinetics of ligand/receptor interactions and the expression of the receptor chains for these cytokines in various cell types; both of which are crucial factors in explaining the efficiency by which these cytokines induce intracellular signaling and gene expression. Work initiated in part by William (Bill) E. Paul on IL-4 some 30 years ago has now grown into a major building block of our current understanding of basic immunology and the immune response. This knowledge on IL-4 has growing clinical importance, as therapeutic approaches targeting the cytokine and its signal transduction are becoming a part of the clinical practice in treating allergic diseases. Just by reading the reference list of this short review, one can appreciate the enormous input Bill has had on shaping our understanding of the pathophysiology of allergic inflammation and in particular the role of IL-4 in this process.
Allergic inflammatory memory in human respiratory epithelial progenitor cells
Barrier tissue dysfunction is a fundamental feature of chronic human inflammatory diseases 1 . Specialized subsets of epithelial cells—including secretory and ciliated cells—differentiate from basal stem cells to collectively protect the upper airway 2 – 4 . Allergic inflammation can develop from persistent activation 5 of type 2 immunity 6 in the upper airway, resulting in chronic rhinosinusitis, which ranges in severity from rhinitis to severe nasal polyps 7 . Basal cell hyperplasia is a hallmark of severe disease 7 – 9 , but it is not known how these progenitor cells 2 , 10 , 11 contribute to clinical presentation and barrier tissue dysfunction in humans. Here we profile primary human surgical chronic rhinosinusitis samples (18,036 cells, n  = 12) that span the disease spectrum using Seq-Well for massively parallel single-cell RNA sequencing 12 , report transcriptomes for human respiratory epithelial, immune and stromal cell types and subsets from a type 2 inflammatory disease, and map key mediators. By comparison with nasal scrapings (18,704 cells, n  = 9), we define signatures of core, healthy, inflamed and polyp secretory cells. We reveal marked differences between the epithelial compartments of the non-polyp and polyp cellular ecosystems, identifying and validating a global reduction in cellular diversity of polyps characterized by basal cell hyperplasia, concomitant decreases in glandular cells, and phenotypic shifts in secretory cell antimicrobial expression. We detect an aberrant basal progenitor differentiation trajectory in polyps, and propose cell-intrinsic 13 , epigenetic 14 , 15 and extrinsic factors 11 , 16 , 17 that lock polyp basal cells into this uncommitted state. Finally, we functionally demonstrate that ex vivo cultured basal cells retain intrinsic memory of IL-4/IL-13 exposure, and test the potential for clinical blockade of the IL-4 receptor α-subunit to modify basal and secretory cell states in vivo. Overall, we find that reduced epithelial diversity stemming from functional shifts in basal cells is a key characteristic of type 2 immune-mediated barrier tissue dysfunction. Our results demonstrate that epithelial stem cells may contribute to the persistence of human disease by serving as repositories for allergic memories. Single-cell RNA sequencing is used to characterize cell types in nasal tissues from human patients with chronic rhinosinusitis, revealing a role for tissue stem cells in allergic inflammatory memory.
IL4Rα Signaling Abrogates Hypoxic Neutrophil Survival and Limits Acute Lung Injury Responses In Vivo
Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1α (hypoxia-inducible factor-1α)-mediated neutrophil adaptation, resulting in resolution of lung injury. Neutrophil activation of IL4Ra (IL-4 receptor α) signaling pathways was explored in human acute respiratory distress syndrome patient samples, after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1α-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. , IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. We describe an important interaction whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury.
Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion
The role of neutrophils in helminth infection has been relatively unclear. Gause and colleagues demonstrate that neutrophils are involved in the priming of an M2 macrophage response that mediates long-term protection against helminth infection. We examined the role of innate cells in acquired resistance to the natural murine parasitic nematode, Nippostrongylus brasiliensis . Macrophages obtained from lungs as late as 45 d after N. brasiliensis inoculation were able to transfer accelerated parasite clearance to naive recipients. Primed macrophages adhered to larvae in vitro and triggered increased mortality of parasites. Neutrophil depletion in primed mice abrogated the protective effects of transferred macrophages and inhibited their in vitro binding to larvae. Neutrophils in parasite-infected mice showed a distinct transcriptional profile and promoted alternatively activated M2 macrophage polarization through secretory factors including IL-13. Differentially activated neutrophils in the context of a type 2 immune response therefore prime a long-lived effector macrophage phenotype that directly mediates rapid nematode damage and clearance.
Duodenal Mucosa of Patients With Type 1 Diabetes Shows Distinctive Inflammatory Profile and Microbiota
Increasing evidences suggest a correlation between gut and type 1 diabetes (T1D). The objective of this study is to evaluate the gut inflammatory profile and microbiota in patients with T1D compared with healthy control (CTRL) subjects and patients with celiac disease (CD) as gut inflammatory disease controls. The inflammatory status and microbiome composition were evaluated in biopsies of the duodenal mucosa of patients with T1D (n = 19), in patients with CD (n = 19), and CTRL subjects (n = 16) recruited at San Raffaele Scientific Institute, in Milan, Italy, between 2009 and 2015. Inflammation was evaluated by gene expression study and immunohistochemistry. Microbiome composition was analyzed by 16S ribosomal RNA gene sequencing. An increased expression of CCL13, CCL19, CCL22, CCR2, COX2, IL4R, CD68, PTX3, TNFα, and VEGFA was observed in patients with T1D compared with CTRL subjects and patients with CD. Immunohistochemical analysis confirmed T1D-specific inflammatory status compared with healthy and CD control tissues, mainly characterized by the increase of the monocyte/macrophage lineage infiltration. The T1D duodenal mucosal microbiome results were different from the other groups, with an increase in Firmicutes and Firmicutes/Bacteroidetes ratio and a reduction in Proteobacteria and Bacteroidetes. The expression of genes specific for T1D inflammation was associated with the abundance of specific bacteria in the duodenum. This study shows that duodenal mucosa in T1D presents disease-specific abnormalities in the inflammatory profile and microbiota. Understanding the mechanisms underlying these features is critical to disentangle the complex pathogenesis of T1D and to gain new perspectives for future therapies targeting the intestine.
An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells
An IL4R polymorphism associated with severe asthma drives conversion of regulatory T cells to T H 17 cells; this can be inhibited by neutralizing interleukin-6. Mechanisms by which regulatory T (T reg ) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the gene encoding the interleukin (IL)-4 receptor alpha chain ( Il4ra R576 ) promotes conversion of induced T reg (iT reg ) cells toward a T helper 17 (T H 17) cell fate. This skewing is mediated by the recruitment by IL-4Rα R576 of the growth-factor-receptor-bound protein 2 (GRB2) adaptor protein, which drives IL-17 expression by activating a pathway that involves extracellular-signal-regulated kinase, IL-6 and the transcription factor STAT3. T reg cell–specific deletion of genes that regulate T H 17 cell differentiation, including Il6ra and RAR-related orphan receptor gamma ( Rorc ), but not of Il4 or Il13 , prevented exacerbated airway inflammation in mice expressing Il4ra R576 (hereafter referred to as Il4ra R576 mice). Furthermore, treatment of Il4ra R576 mice with a neutralizing IL-6-specific antibody prevented iT reg cell reprogramming into T H 17-like cells and protected against severe airway inflammation. These findings identify a previously unknown mechanism for the development of mixed T H 2–T H 17 cell inflammation in genetically prone individuals and point to interventions that stabilize iT reg cells as potentially effective therapeutic strategies.
The Causal Role of IL-4 and IL-13 in Schistosoma mansoni Pulmonary Hypertension
The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-β signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure. We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-β-dependent vascular remodeling. Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed. Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-β activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation. Combined IL-4 and IL-13 deficiency is required for protection against TGF-β-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.
Cell-Specific Contribution of IL-4 Receptor α Signaling Shapes the Overall Manifestation of Allergic Airway Disease
IL-4 and IL-13 play a critical role in allergic asthma pathogenesis via their common receptor IL-4Rα. However, the cell-specific role of IL-4Rα in mixed allergen (MA)-induced allergic asthma has remained unclear. Therefore, we aimed to identify the cell-specific contribution of IL-4Rα signaling in the manifestation of various pathological outcomes in mice with allergic airway disease. We compared MA-induced pathological outcomes between hematopoietic progenitor cell (HPC)- or non-HPC-specific IL-4Rα-deficient chimera, myeloid cell-specific IL-4Rα-deficient (LysMcre IL-4Rα ), and airway epithelial cell-specific IL-4Rα-deficient (CCSP-Cre /IL-4Rα ) mice. Chimeric mice with systemic IL-4Rα sufficiency displayed hallmark features of allergic asthma, including eosinophilic and lymphocytic infiltration, type 2 (T-helper type 2) cytokine/chemokine production, IgE production, and lung pathology. These features were markedly reduced in chimeric mice with systemic IL-4Rα deficiency. Non-HPC-specific IL-4Rα-deficient mice displayed typical inflammatory features of allergic asthma but with markedly reduced mucous cell metaplasia (MCM). Deletion of IL-4Rα signaling on airway epithelial cells, a subpopulation within the non-HPC lineage, resulted in almost complete absence of MCM. In contrast, all features of allergic asthma except for MCM and mucin production were mitigated in HPC-specific IL-4Rα-deficient chimeric mice. Deleting IL-4Rα signaling in myeloid cells, a subpopulation within the HPC lineage, significantly alleviated MA-induced allergic airway inflammatory responses, but, similar to the HPC-specific IL-4Rα-deficient chimeric mice, these mice showed significant MCM and mucin production. Our findings demonstrate that the differential allergen responsiveness seen in mice with HPC-specific and non-HPC-specific IL-4Rα deficiency is predominantly driven by the absence of IL-4Rα in myeloid cells and airway epithelial cells, respectively. Our findings also highlight distinct and mutually exclusive roles of IL-4Rα signaling in mediating pathological outcomes within the myeloid and airway epithelial cell compartments.
Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor
The success of adoptively transferred tumor-directed T cells requires them to survive and expand in vivo. Most tumors, however, employ immune evasion mechanisms, including the production of inhibitory cytokines that limit in vivo T-cell persistence and effector function. To protect tumor-directed T cells from such negative influences, we generated a chimeric cytokine receptor in which the interleukin (IL) 4 receptor exodomain was fused to the IL7 receptor endodomain. We thereby inverted the effects of tumor-derived IL4 so that the proliferation and activation of tumor directed cytotoxic T cells was enhanced rather than inhibited in the tumor microenvironment, resulting in superior antitumor activity. These transgenic T cells were only activated in the tumor environment since triggering required exposure to both tumor antigen (signal 1) and tumor-derived IL4 (signal 2). This selectivity supports future clinical adaptation.
Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma
Recurrent infections with respiratory syncytial virus (RSV) early in life increase susceptibility to asthma. Nandini Krishnamoorthy et al . show that RSV infection of young mice impairs maternally transferred tolerance to allergens. Regulatory T (T reg ) cells in infected mice have impaired suppressor function and adopt a T H 2-like phenotype. Immune tolerance is instituted early in life, during which time regulatory T (T reg ) cells have an important role. Recurrent infections with respiratory syncytial virus (RSV) in early life increase the risk for asthma in adult life. Repeated infection of infant mice tolerized to ovalbumin (OVA) through their mother's milk with RSV induced allergic airway disease in response to OVA sensitization and challenge, including airway inflammation, hyper-reactivity and higher OVA-specific IgE, as compared to uninfected tolerized control mice. Virus infection induced GATA-3 expression and T helper type 2 (T H 2) cytokine production in forkhead box P3 (FOXP3) + T reg cells and compromised the suppressive function of pulmonary T reg cells in a manner that was dependent on interleukin-4 receptor α (IL-4Rα) expression in the host. Thus, by promoting a T H 2-type inflammatory response in the lung, RSV induced a T H 2-like effector phenotype in T reg cells and attenuated tolerance to an unrelated antigen (allergen). Our findings highlight a mechanism by which viral infection targets a host-protective mechanism in early life and increases susceptibility to allergic disease.