Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Item Type
      Item Type
      Clear All
      Item Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
24,060 result(s) for "Internet traffic"
Sort by:
A Hybrid Online Classifier System for Internet Traffic Based on Statistical Machine Learning Approach and Flow Port Number
Internet traffic classification is a beneficial technique in the direction of intrusion detection and network monitoring. After several years of searching, there are still many open problems in Internet traffic classification. The hybrid classifier combines more than one classification method to identify Internet traffic. Using only one method to classify Internet traffic poses many risks. In addition, an online classifier is very important in order to manage threats on traffic such as denial of service, flooding attack and other similar threats. Therefore, this paper provides some information to differentiate between real and live internet traffic. In addition, this paper proposes a hybrid online classifier (HOC) system. HOC is based on two common classification methods, port-base and ML-base. HOC is able to perform an online classification since it can identify live Internet traffic at the same time as it is generated. HOC was used to classify three common Internet application classes, namely web, WhatsApp and Twitter. HOC produces more than 90% accuracy, which is higher than any individual classifiers.
Features analysis of internet traffic classification using interpretable machine learning models
Internet traffic classification is a fundamental task for network services and management. There are good machine learning models to identify the class of traffic. However, finding the most discriminating features to have efficient models remains essential. In this paper, we use interpretable machine learning algorithms such as decision tree, random forest and eXtreme gradient boosting (XGBoost) to find the most discriminating features for internet traffic classification. The dataset used contains 377,526 traffics. Each traffic is described by 248 features. From these features, we propose a 12-feature model with an accuracy of up to 99.76%. We tested it on another dataset with 19626 flows and obtained 98.40% of accuracy. This shows the efficiency and stability of our model. Also, we identify a set of 14 important features for internet traffic classification, including two that are crucial: port number (server) and minimum segment size (client to server).
Forecasting short-term data center network traffic load with convolutional neural networks
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.
Internet Traffic Classification Based on Incremental Support Vector Machines
Machine learning methods have been deployed widely in Internet traffic classification, which identify encrypted traffic and proprietary protocols effectively based on statistical features of traffic flows. Among these methods, support vector machines (SVMs) have attracted increasing attention as it achieves the state of art performance in traffic classification compared with other machine learning methods. However, traditional SVMs-based traffic classifier also has its limitations in real application: high training complexity and computation cost on both memory and CPU, which leads to the frequent and timely updating of traffic classifier being impractical. In this paper, incremental SVMs (ISVM) model is first introduced to reduce the high training cost of memory and CPU, and realize traffic classifier’s high-frequency and quick updates Besides, a modified version of ISVM model with attenuation factor, called AISVM, is further proposed to utilize valuable information in the previous training data sets. The experimental results have proved the effectiveness of ISVM and AISVM models in traffic classification.
A Novel Method for Improved Network Traffic Prediction Using Enhanced Deep Reinforcement Learning Algorithm
Network data traffic is increasing with expanded networks for various applications, with text, image, audio, and video for inevitable needs. Network traffic pattern identification and analysis of traffic of data content are essential for different needs and different scenarios. Many approaches have been followed, both before and after the introduction of machine and deep learning algorithms as intelligence computation. The network traffic analysis is the process of incarcerating traffic of a network and observing it deeply to predict what the manifestation in traffic of the network is. To enhance the quality of service (QoS) of a network, it is important to estimate the network traffic and analyze its accuracy and precision, as well as the false positive and negative rates, with suitable algorithms. This proposed work is coining a new method using an enhanced deep reinforcement learning (EDRL) algorithm to improve network traffic analysis and prediction. The importance of this proposed work is to contribute towards intelligence-based network traffic prediction and solve network management issues. An experiment was carried out to check the accuracy and precision, as well as the false positive and negative parameters with EDRL. Also, convolutional neural network (CNN) machines and deep learning algorithms have been used to predict the different types of network traffic, which are labeled text-based, video-based, and unencrypted and encrypted data traffic. The EDRL algorithm has outperformed with mean Accuracy (97.20%), mean Precision (97.343%), mean false positive (2.657%) and mean false negative (2.527%) than the CNN algorithm.
An insight into internet sector in Iraq
The internet is considered to be the most advanced technology today and a gateway to modern communication and the sharing of information, products, services, and technology. Nowadays, users want to be able to access anywhere and anytime several services and applications, which is increasing data traffic and triggering a mobile data explosion. Iraq has major problems in increasing the growth and use of the internet and changing the standard method of communication. This is a big challenge, however, since there are several variables that characterize this phase of transformation. In this paper, the problems, vision, and solutions are presented in details. This study aims to clarify the factors of internet use in Iraq by the use of an acceptable approach and by suggesting new solutions for all the presented problems. This work also, clarify the expected traffic and the mechanism to transform the traffic between local ISP’s networks (AS) internet exchange points.
Traffic self-similarity analysis and application of industrial internet
Industrial internet traffic prediction is not only an academic problem, but also a concern of industry and network performance department. Efficient prediction of industrial internet traffic is helpful for protocol design, traffic scheduling, detection of network attacks, etc. This paper proposes an industrial internet traffic prediction method based on the Echo State Network. In the first place this paper proves that the industrial internet traffic data are self-similar by means of the calculation of Hurst exponent of each traffic time series. It indicates that industrial internet traffic can be predicted utilizing nonlinear time series models. Then Echo State Network is applied for industrial internet traffic forecasting. Furthermore, to avoid the weak-conditioned problem, grid search algorithm is used to optimize the reservoir parameters and coefficients. The dataset this paper perform experiments on are large-scale industrial internet traffic data at different time scale. They come from Industrial Internet in three regions and are provided by ZTE Corporation. The result shows that our approach can predict industrial internet traffic efficiently, which is also a verification of the self-similarity analysis.
A Barzilai–Borwein Gradient Algorithm for Spatio-Temporal Internet Traffic Data Completion via Tensor Triple Decomposition
With the coming of high-speed network and 5G era, internet traffic data is crucial for various network tasks such as traffic engineering, capacity planning and anomaly detection. To explore the natural spatio-temporal structure of network flow, we use the novel triple decomposition of tensors to establish an optimization model with the spatio-temporal regularization for completing the internet traffic data. A Barzilai–Borwein gradient algorithm is designed for solving the spatio-temporal internet traffic tensor completion problem. We prove the convergence of this algorithm and analyze its convergence rate with the tool of the Kurdyka-Łojasiewicz property. Numerical experiments on Abilene and GÉANT datasets report that the proposed tensor completion method is effective.