Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8,851
result(s) for
"Intracellular Signaling Peptides and Proteins - genetics"
Sort by:
Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis
by
Manabu Tatokoro
,
Jane Trepel
,
Soichiro Yoshida
in
adenosine triphosphate
,
aerobiosis
,
Animals
2013
TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counterparts, suggesting that TRAP1 function in mitochondria of normal and transformed cells is more complex than previously appreciated. We have used TRAP1-null cells and transient TRAP1 silencing/overexpression to show that TRAP1 regulates a metabolic switch between oxidative phosphorylation and aerobic glycolysis in immortalized mouse fibroblasts and in human tumor cells. TRAP1-deficiency promotes an increase in mitochondrial respiration and fatty acid oxidation, and in cellular accumulation of tricarboxylic acid cycle intermediates, ATP and reactive oxygen species. At the same time, glucose metabolism is suppressed. TRAP1-deficient cells also display strikingly enhanced invasiveness. TRAP1 interaction with and regulation of mitochondrial c-Src provide a mechanistic basis for these phenotypes. Taken together with the observation that TRAP1 expression is inversely correlated with tumor grade in several cancers, these data suggest that, in some settings, this mitochondrial molecular chaperone may act as a tumor suppressor.
Journal Article
SAMD9L acts as an antiviral factor against HIV-1 and primate lentiviruses by restricting viral and cellular translation
by
Loyer, Clara
,
Dahoui, Clara
,
Guéguen, Laurent
in
Acquired immune deficiency syndrome
,
Agricultural and Biological Sciences (all)
,
AIDS
2024
Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.
Journal Article
A variant in CDKAL1 influences insulin response and risk of type 2 diabetes
by
Emilsson, Valur
,
Adeyemo, Adebowale
,
Wijmenga, Cisca
in
Adult
,
Agriculture
,
Animal Genetics and Genomics
2007
We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (
TCF7L2
) gene conferred the most significant risk. In addition to confirming two recently identified risk variants
1
, we identified a variant in the
CDKAL1
gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13–1.27),
P
= 7.7 × 10
−9
) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11–1.40),
P
= 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31–1.72) and 1.55 (1.23–1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.
Journal Article
A genome-wide association study in 10,000 individuals links plasma N-glycome to liver disease and anti-inflammatory proteins
by
Timofeeva, Maria
,
Trbojević-Akmačić, Irena
,
Feoktistova, Sofya
in
45/43
,
631/208/205/2138
,
631/337/458/1524
2025
More than a half of plasma proteins are N-glycosylated. Most of them are synthesized, glycosylated, and secreted to the bloodstream by liver and lymphoid tissues. While associations with N-glycosylation are implicated in the rising number of liver, cardiometabolic, and immune diseases, little is known about the genetic regulation of this process. Here, we performed the largest genome-wide association study of N-glycosylation of the blood plasma proteome in 10,000 individuals. We doubled the number of genetic loci known to be associated with blood N-glycosylation by identifying 16 novel loci and prioritizing 13 novel genes contributing to N-glycosylation. Among these were the
GCKR
,
TRIB1
,
HP, SERPINA1
and
CFH
genes. These genes are predominantly expressed in the liver and show a previously unknown genetic link between plasma protein N-glycosylation, metabolic and liver diseases, and inflammatory response. By integrating glycomics, proteomics, transcriptomics, and genomics, we provide a resource that facilitates deeper exploration of disease pathogenesis and supports the discovery of glycan-based biomarkers.
Proteins are often modified by complex carbohydrates (N-glycans). Here, authors identified gene regulators of this process and uncovered links between plasma protein Nglycosylation, metabolic and liver diseases, and anti-inflammatory proteins.
Journal Article
Whi2 is a conserved negative regulator of TORC1 in response to low amino acids
by
Hardwick, J. Marie
,
Metz, Kyle A.
,
Diny, Nicola L.
in
Amino acids
,
Amino Acids - metabolism
,
Animals
2018
Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.
Journal Article
Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens
2018
Mutations in the nucleotide-binding oligomerization domain protein 12 (NLRP12) cause recurrent episodes of serosal inflammation. Here we show that NLRP12 efficiently sequesters HSP90 and promotes K48-linked ubiquitination and degradation of NOD2 in response to bacterial muramyl dipeptide (MDP). This interaction is mediated by the linker-region proximal to the nucleotide-binding domain of NLRP12. Consequently, the disease-causing NLRP12 R284X mutation fails to repress MDP-induced NF-κB and subsequent activity of the JAK/STAT signaling pathway. While NLRP12 deficiency renders septic mice highly susceptible towards MDP, a sustained sensing of MDP through NOD2 is observed among monocytes lacking NLRP12. This loss of tolerance in monocytes results in greater colonization resistance towards
Citrobacter rodentium
. Our data show that this is a consequence of NOD2-dependent accumulation of inflammatory mononuclear cells that correlates with induction of interferon-stimulated genes. Our study unveils a relevant process of tolerance towards the gut microbiota that is exploited by an attaching/effacing enteric pathogen.
Mutations in nucleotide-binding oligomerization domain protein 12 (NLRP12) are known to effect inflammatory processes. Here the authors show that NLRP12-mediated proteasomal degradation of NOD2 in monocytes promotes bacterial tolerance and colonisation in a model of enteric infection.
Journal Article
mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells
2015
Cancer cells harboring oncogenic
BRaf
mutants, but not oncogenic
KRas
mutants, are sensitive to MEK inhibitors (MEKi). The mechanism underlying the intrinsic resistance to MEKi in KRas-mutant cells is under intensive investigation. Here, we pursued this mechanism by live imaging of extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin complex 1 (mTORC1) activities in oncogenic KRas or BRaf-mutant cancer cells. We established eight cancer cell lines expressing Förster resonance energy transfer (FRET) biosensors for ERK activity and S6K activity, which was used as a surrogate marker for mTORC1 activity. Under increasing concentrations of MEKi, ERK activity correlated linearly with the cell growth rate in BRaf-mutant cancer cells, but not KRas-mutant cancer cells. The administration of PI3K inhibitors resulted in a linear correlation between ERK activity and cell growth rate in KRas-mutant cancer cells. Intriguingly, mTORC1 activity was correlated linearly with the cell growth rate in both BRaf-mutant cancer cells and KRas-mutant cancer cells. These observations suggested that mTORC1 activity had a pivotal role in cell growth and that the mTORC1 activity was maintained primarily by the ERK pathway in BRaf-mutant cancer cells and by both the ERK and PI3K pathways in KRas-mutant cancer cells. FRET imaging revealed that MEKi inhibited mTORC1 activity with slow kinetics, implying transcriptional control of mTORC1 activity by ERK. In agreement with this observation, MEKi induced the expression of negative regulators of mTORC1, including TSC1, TSC2 and Deptor, which occurred more significantly in BRaf-mutant cells than in KRas-mutant cells. These findings suggested that the suppression of mTORC1 activity and induction of negative regulators of mTORC1 in cancer cells treated for at least 1 day could be used as surrogate markers for the MEKi sensitivity of cancer cells.
Journal Article
Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo
by
Sjölund, Jonas
,
Manna, Sugata
,
Norin, Carl
in
Animals
,
Basic Helix-Loop-Helix Transcription Factors - genetics
,
Basic Helix-Loop-Helix Transcription Factors - metabolism
2008
Loss of the tumor suppressor gene von Hippel-Lindau (VHL) plays a key role in the oncogenesis of clear cell renal cell carcinoma (CCRCC). The loss leads to stabilization of the HIF transcription complex, which induces angiogenic and mitogenic pathways essential for tumor formation. Nonetheless, additional oncogenic events have been postulated to be required for the formation of CCRCC tumors. Here, we show that the Notch signaling cascade is constitutively active in human CCRCC cell lines independently of the VHL/HIF pathway. Blocking Notch signaling resulted in attenuation of proliferation and restrained anchorage-independent growth of CCRCC cell lines. Using siRNA targeting the different Notch receptors established that the growth-promoting effects of the Notch signaling pathway were attributable to Notch-1 and that Notch-1 knockdown was accompanied by elevated levels of the negative cell-cycle regulators p21 Cip1 and/or p27 Kip1. Treatment of nude mice with an inhibitor of Notch signaling potently inhibited growth of xenotransplanted CCRCC cells. Moreover, Notch-1 and the Notch ligand Jagged-1 were expressed at significantly higher levels in CCRCC tumors than in normal human renal tissue, and the growth of primary CCRCC cells was attenuated upon inhibition of Notch signaling. These findings indicate that the Notch cascade may represent a novel and therapeutically accessible pathway in CCRCC.
Journal Article
ATAD3B and SKIL polymorphisms associated with antipsychotic-induced QTc interval change in patients with schizophrenia: a genome-wide association study
2022
QTc interval prolongation is one of the most common antipsychotic-induced side effects which could lead to ventricular tachycardia or Torsade de Pointes, even cardiac arrest. There is very limited understanding on the genetic factors that associated with antipsychotic-induced QTc interval change. We conducted a genome-wide association study (GWAS) of antipsychotic-induced QTc interval change among patients with schizophrenia. A total of 2040 patients with schizophrenia were randomly assigned to six groups (olanzapine, risperidone, quetiapine, aripiprazole, ziprasidone, and first-generation antipsychotics; first-generation antipsychotics including haloperidol or perphenazine were also assigned randomly) and received 6-week antipsychotic treatment. We identified two novel loci (rs200050752 in
ATAD3B
and rs186507741 in
SKIL
) that were associated with antipsychotic-induced QTc interval change at a genome-wide significance level. The combination of polygenic risk score (PRS), based the GWAS of myocardial infarction from BioBank Japan project, and clinical data (sex, heart rate and QTc interval at baseline) could be applied to predict whether patients with schizophrenia have QTc interval prolongation (10 ms was applied as threshold,
P
< 0.001, area under the curve [AUC] was 0.797), especially for the first episode patients (
P
< 0.001, AUC was 0.872). We identified two loci located within genes related to mitochondrial function and cell growth and differentiation, which were both associated with schizophrenia and heart function. The combination of PRS and clinical data could predict whether patients with schizophrenia have the side effect of QTc interval prolongation, which could fundamentally guide the choice of antipsychotic in patients with schizophrenia, especially for the first-episode patients.
Journal Article
Germline polymorphisms in genes maintaining the replication fork predict the efficacy of oxaliplatin and irinotecan in patients with metastatic colorectal cancer
by
Mancao Christoph
,
Mumenthaler, Shannon M
,
Zhang, Wu
in
Bevacizumab
,
Chemotherapy
,
Colorectal cancer
2022
BackgroundThe TIMELESS–TIPIN complex protects the replication fork from replication stress induced by chemotherapeutic drugs. We hypothesised genetic polymorphisms of the TIMELESS–TIPIN complex may affect the response, progression-free survival (PFS), and overall survival (OS) of cytotoxic drugs in patients with metastatic colorectal cancer (mCRC).MethodsWe analysed data from the MAVERICC trial, which compared FOLFOX/bevacizumab and FOLFIRI/bevacizumab in untreated patients with mCRC. Genomic DNA extracted from blood samples was genotyped using an OncoArray. Eight functional single nucleotide polymorphisms (SNPs) in TIMELESS and TIPIN were tested for associations with clinical outcomes.ResultsIn total, 324 patients were included (FOLFOX/bevacizumab arm, n = 161; FOLFIRI/bevacizumab arm, n = 163). In the FOLFOX/bevacizumab arm, no SNPs displayed confirmed associations with survival outcomes. In the FOLFIRI/bevacizumab arm, TIMELESS rs2291739 was significantly associated with OS in multivariate analysis (G/G vs. any A allele, hazard ratio = 3.06, 95% confidence interval = 1.49–6.25, p = 0.004). TIMELESS rs2291739 displayed significant interactions with treatment regarding both PFS and OS.ConclusionsTIMELESS rs2291739 might have different effects on therapeutic efficacy between oxaliplatin- and irinotecan-based chemotherapies. Upon further validation, our findings may be useful for personalised approaches in the first-line treatment of mCRC.
Journal Article