Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Intralaminar Thalamic Nuclei - metabolism"
Sort by:
Experimental Characterization of the Chronic Constriction Injury-Induced Neuropathic Pain Model in Mice
Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.
Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease
In light of postmortem human studies showing extensive degeneration of the center median (CM) and parafascicular (Pf) thalamic nuclei in Parkinson’s disease patients, the present study assessed the extent of neuronal loss in CM/Pf of non-human primates that were rendered parkinsonian by repeated injections of low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to determine the course of CM/Pf degeneration during the MPTP intoxication, motor-asymptomatic animals with partial striatal dopamine denervation were also used. The Cavalieri’s principle for volume estimation and the unbiased stereological cell count method with the optical dissector technique were used to estimate the total number of neurons in the CM/Pf. We found substantial neurons loss in the CM/Pf in both, motor-symptomatic MPTP-treated monkeys in which the striatal dopamine innervation was reduced by more than 80 %, and in motor-asymptomatic MPTP-treated animals with 40–50 % striatal dopamine loss. In MPTP-treated parkinsonian monkeys, 60 and 62 % neurons loss was found in CM and Pf, respectively, while partially dopamine-depleted asymptomatic animals displayed 59 and 52 % neurons loss in the CM and Pf, respectively. Thus, our study demonstrates that the CM/Pf neurons loss is an early phenomenon that occurs prior to the development of parkinsonian motor symptoms in these animals. In contrast, the neighboring mediodorsal nucleus of the thalamus was only mildly affected (18 % neurons loss) in the parkinsonian monkeys. Together with recent findings about the possible role of the CM/Pf-striatal system in cognition, our findings suggest that the pathology of the thalamostriatal system may precede the development of motor symptoms in PD, and may account for some of the cognitive deficits in attentional set-shifting often seen in these patients. Future studies in this animal model, and in monkeys with selective lesion of CM or Pf, are needed to further elucidate the role of the CM/Pf-striatal system in normal and parkinsonian conditions.
Morphological Study of the Cortical and Thalamic Glutamatergic Synaptic Inputs of Striatal Parvalbumin Interneurons in Rats
Parvalbumin-immunoreactive (Parv+) interneurons is an important component of striatal GABAergic microcircuits, which receive excitatory inputs from the cortex and thalamus, and then target striatal projection neurons. The present study aimed to examine ultrastructural synaptic connection features of Parv+ neruons with cortical and thalamic input, and striatal projection neurons by using immuno-electron microscopy (immuno-EM) and immunofluorescence techniques. Our results showed that both Parv+ somas and dendrites received numerous asymmetric synaptic inputs, and Parv+ terminals formed symmetric synapses with Parv− somas, dendrites and spine bases. Most interestingly, spine bases targeted by Parv+ terminals simultaneously received excitatory inputs at their heads. Electrical stimulation of the motor cortex (M1) induced higher proportion of striatal Parv+ neurons express c-Jun than stimulation of the parafascicular nucleus (PFN), and indicated that cortical- and thalamic-inputs differentially modulate Parv+ neurons. Consistent with that, both Parv + soma and dendrites received more VGlut1+ than VGlut2+ terminals. However, the proportion of VGlut1+ terminal targeting onto Parv+ proximal and distal dendrites was not different, but VGlut2+ terminals tended to target Parv+ somas and proximal dendrites than distal dendrites. These functional and morphological results suggested excitatory cortical and thalamic glutamatergic inputs differently modulate Parv+ interneurons, which provided inhibition inputs onto striatal projection neurons. To maintain the balance between the cortex and thalamus onto Parv+ interneurons may be an important therapeutic target for neurological disorders.
Hedgehog signaling from the ZLI regulates diencephalic regional identity
The zona limitans intrathalamica (ZLI), a narrow compartment in the vertebrate forebrain that bisects the diencephalon transversely, expresses the secreted factor sonic hedgehog (Shh). Because genetic disruption of Shh in mouse causes severe early developmental defects, this strategy has not been useful in identifying a ZLI-specific role for this gene. To modulate Shh signaling in a spatiotemporally restricted manner, we carried out gain- and loss-of-function experiments in chick embryos using in ovo electroporation and found that Shh signaling is required for region-specific gene expression in thalamus and prethalamus, the major diencephalic brain areas flanking the ZLI. We further show that differential competence of thalamic and prethalamic primordia in responding to Shh signaling is regulated by the transcription factor Irx3. We show that, through the release of Shh, the ZLI functions as a local signaling center that regulates the acquisition of identity for these important diencephalic regions.
Visualization of fast calcium oscillations in the parafascicular nucleus
The parafascicular nucleus (Pf) is an ascending target of the pedunculopontine nucleus (PPN) and is part of the “non-specific” intralaminar thalamus. The PPN, part of the reticular activating system, is mainly involved in waking and rapid eye movement sleep. Gamma oscillations are evident in all Pf neurons and mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 9 to 19-day-old rat Pf neurons ( n  = 148, dye filled n  = 61, control n  = 87) were filled with Fura 2, Bis Fura, or Oregon Green BAPTA-1. Calcium transients were generated during depolarizing current ramps and visualized with a high-speed, wide-field fluorescence imaging system. Cells manifested calcium transients with oscillations in both somatic and proximal dendrite fluorescence recordings. Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or the combination of ω-Agatoxin-IVA (AgA), a specific P/Q-type calcium channel blocker and ω-conotoxin-GVIA (CgTx), a specific N-type calcium channel blocker. We developed a viable methodology for studying high-speed oscillations without the use of multi-photon imaging systems.
Somatostatin-expressing parafacial neurons are CO 2 /H + sensitive and regulate baseline breathing
Glutamatergic neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating breathing in response to tissue CO /H . The RTN and greater parafacial region may also function as a chemosensing network composed of CO /H -sensitive excitatory and inhibitory synaptic interactions. In the context of disease, we showed that loss of inhibitory neural activity in a mouse model of Dravet syndrome disinhibited RTN chemoreceptors and destabilized breathing (Kuo et al., 2019). Despite this, contributions of parafacial inhibitory neurons to control of breathing are unknown, and synaptic properties of RTN neurons have not been characterized. Here, we show the parafacial region contains a limited diversity of inhibitory neurons including somatostatin ( )-, parvalbumin ( )-, and cholecystokinin ( )-expressing neurons. Of these, Sst-expressing interneurons appear uniquely inhibited by CO /H . We also show RTN chemoreceptors receive inhibitory input that is withdrawn in a CO /H -dependent manner, and chemogenetic suppression of parafacial neurons, but not or + neurons, increases baseline breathing. These results suggest -expressing parafacial neurons contribute to RTN chemoreception and respiratory activity.
Schizophrenia-like phenotypes in mice with NMDA receptor ablation in intralaminar thalamic nucleus cells and gene therapy-based reversal in adults
In understanding the mechanism of schizophrenia pathogenesis, a significant finding is that drug abuse of phencyclidine or its analog ketamine causes symptoms similar to schizophrenia. Such drug effects are triggered even by administration at post-adolescent stages. Both drugs are N -methyl- d -aspartate receptor (NMDAR) antagonists, leading to a major hypothesis that glutamate hypofunction underlies schizophrenia pathogenesis. The precise region that depends on NMDAR function, however, is unclear. Here, we developed a mouse strain in which NMDARs in the intralaminar thalamic nuclei (ILN) were selectively disrupted. The mutant mice exhibited various schizophrenia-like phenotypes, including deficits in working memory, long-term spatial memory, and attention, as well as impulsivity, impaired prepulse inhibition, hyperlocomotion and hyperarousal. The electroencephalography analysis revealed that the mutant mice had a significantly reduced power in a wide range of frequencies including the alpha, beta and gamma bands, both during wake and rapid eye movement (REM) sleep, and a modest decrease of gamma power during non-REM sleep. Notably, restoring NMDARs in the adult ILN rescued some of the behavioral abnormalities. These findings suggest that NMDAR dysfunction in the ILN contributes to the pathophysiology of schizophrenia-related disorders. Furthermore, the reversal of inherent schizophrenia-like phenotypes in the adult mutant mice supports that ILN is a potential target site for a therapeutic strategy.
Trigeminal-Rostral Ventromedial Medulla Circuitry is Involved in Orofacial Hyperalgesia Contralateral to Tissue Injury
Background: Our previous studies have shown that complete Freund's adjuvant (CFA)-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β) into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc) can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM), a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results: Microinjection of the IL-1 receptor antagonist (5 nmol, n=6) into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol) and L-733,060 (0.5-11.4 nmol), attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol), attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions: These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.
Sub-synaptic localization of Ca v 3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys
T-type calcium channels (Ca 3) are key mediators of thalamic bursting activity, but also regulate single cells excitability, dendritic integration, synaptic strength and transmitter release. These functions are strongly influenced by the subcellular and subsynaptic localization of Ca 3 channels along the somatodendritic domain of thalamic cells. In Parkinson's disease, T-type calcium channels dysfunction in the basal ganglia-receiving thalamic nuclei likely contributes to pathological thalamic bursting activity. In this study, we analyzed the cellular, subcellular, and subsynaptic localization of the Ca 3.1 channel in the ventral anterior (VA) and centromedian/parafascicular (CM/Pf) thalamic nuclei, the main thalamic targets of basal ganglia output, in normal and parkinsonian monkeys. All thalamic nuclei displayed strong Ca 3.1 neuropil immunoreactivity, although the intensity of immunolabeling in CM/Pf was significantly lower than in VA. Ultrastructurally, 70-80 % of the Ca 3.1-immunoreactive structures were dendritic shafts. Using immunogold labeling, Ca 3.1 was commonly found perisynaptic to asymmetric and symmetric axo-dendritic synapses, suggesting a role of Ca 3.1 in regulating excitatory and inhibitory neurotransmission. Significant labeling was also found at non-synaptic sites along the plasma membrane of thalamic neurons. There was no difference in the overall pattern and intensity of immunostaining between normal and parkinsonian monkeys, suggesting that the increased rebound bursting in the parkinsonian state is not driven by changes in Ca 3.1 expression. Thus, T-type calcium channels are located to subserve neuronal bursting, but also regulate glutamatergic and non-glutamatergic transmission along the whole somatodendritic domain of basal ganglia-receiving neurons of the primate thalamus.
Dopamine Involved in the Nociceptive Modulation in the Parafascicular Nucleus of Morphine-Dependent Rat
Dopamine regulates pain perception in some areas of the central nervous system. Previously, we have confirmed that dopamine potentiated the electric activities of the evoked discharges of pain-excited neurons (PENs) and inhibited those of pain-inhibited neurons (PINs) in the parafascicular nucleus (Pfn) of normal rats. The mechanism of action of dopamine on pain-related neurons in the Pfn of morphine-dependent rat is still unknown. The present study aimed to determine the effects of dopamine and its receptor antagonist droperidol on the pain-evoked responses of the PEN and PIN in the Pfn of morphine-dependent rats, and to compare the effects between the morphine-dependent rat and the normal rat. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The discharges of PEN or PIN in the Pfn were recorded by using a glass microelectrode. The results showed that intra-Pfn microinjection of dopamine decreased the frequency of noxious stimulation-induced discharges of PEN and increased the frequency of PIN. The intra-Pfn administration of droperidol produced an opposite effect. These results demonstrated that dopamine is involved in nociceptive modulation in the morphine-dependent rat, the responses to noxious stimulation between normal rat and morphine-dependent rat are completely opposite. The effect of dopamine is through the dopamine D 2 receptor of PENs and PINs in Pfn. The results suggest that the dopamine system of the Pfn may become a therapeutic target for analgesia and the treatment of morphine dependence.