Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
9,894 result(s) for "Investments Mathematical models."
Sort by:
GARCH models : structure, statistical inference, and financial applications
This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation and tests. The book also provides coverage of several extensions such as asymmetric and multivariate models and looks at financial applications. Key features: Provides up-to-date coverage of the current research in the probability, statistics and econometric theory of GARCH models. Numerous illustrations and applications to real financial series are provided. Supporting website featuring R codes, Fortran programs and data sets. Presents a large collection of problems and exercises. This authoritative, state-of-the-art reference is ideal for graduate students, researchers and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.
Financial modeling with Crystal Ball and Excel
Updated look at financial modeling and Monte Carlo simulation with software by Oracle Crystal Ball This revised and updated edition of the bestselling book on financial modeling provides the tools and techniques needed to perform spreadsheet simulation. It answers the essential question of why risk analysis is vital to the decision-making process, for any problem posed in finance and investment. This reliable resource reviews the basics and covers how to define and refine probability distributions in financial modeling, and explores the concepts driving the simulation modeling process. It also discusses simulation controls and analysis of simulation results. The second edition of Financial Modeling with Crystal Ball and Excel contains instructions, theory, and practical example models to help apply risk analysis to such areas as derivative pricing, cost estimation, portfolio allocation and optimization, credit risk, and cash flow analysis. It includes the resources needed to develop essential skills in the areas of valuation, pricing, hedging, trading, risk management, project evaluation, credit risk, and portfolio management. Offers an updated edition of the bestselling book covering the newest version of Oracle Crystal Ball Contains valuable insights on Monte Carlo simulation-an essential skill applied by many corporate finance and investment professionals Written by John Charnes, the former finance department chair at the University of Kansas and senior vice president of global portfolio strategies at Bank of America, who is currently President and Chief Data Scientist at Syntelli Solutions, Inc. Risk Analytics and Predictive Intelligence Division (Syntelli RAPID) Engaging and informative, this book is a vital resource designed to help you become more adept at financial modeling and simulation.
Forecasting in financial and sports gambling markets : adaptive drift modeling
\"This book discusses cointegrated time series associated with financial and sports gambling markets are analyzed in terms of time-varying parameter models. Modeling premises are that present and past disequilibria--shocks both within and between time series--may affect subsequent changes and rates of these changes within individual series and sufficiently large shocks may disrupt/alter model structure such that resulting forecasts may be temporarily unreliable. Reduced forecasting equations are in terms of higher order ARMA models that are not limited to bilinear processes. Sports forecasting models based on public information are usually more effective--in terms of profitable trading/wagering strategies--than those for the financial sector for two reasons: insider information is less prevalent, and modeling is simplified since lagged shocks associated with the gambling lines/spreads are known--in contrast with financial modeling where there are no comparable gambling shocks, only unknown, lagged statistical shocks in terms of MA variables. Forecasting is illustrated for NFL and NBA playoff games. In financial markets, cointegration is discussed in terms of candlestick chart variants with modeling illustrations given in terms of recent Google price changes. Chapter coverage includes candlestick charts, higher order ARMA processes in financial markets, the effects of gambling shocks in sports gambling markets, cointegrated time series with model drift, modeling volatility, and the promotion of financial and mathematical literacy\"--Provided by publisher.
Optimal investment and marketing strategies
\"Over the past decade, innovative technologies have resulted in an extensive growth of new services. Each new service requires a number of management and marketing decisions to be made well in advance of its launch and throughout its entire life cycle. This book develops mathematical models to facilitate decision-making dealing with technologically innovative services. Specifically, it develops (i) models for optimal pricing strategies of subscription services on monopolistic and duopolistic markets; (ii) an analytical model for optimal investment and optimal pricing strategies for innovative maintenance service contracts; and (iii) a model for targeting customers in marketing campaigns. In addition, the models (i)-(iii) can also be used to forecast an aggregate demand for a new service as well as the service demand for each individual customer.\"--Publisher's website.
Robust equity portfolio management + website : formulations, implementations, and properties using MATLAB
\"The book will be most helpful for readers who are interested in learning about the quantitative side of equity portfolio management, mainly portfolio optimization and risk analysis. Mean-variance portfolio optimization is covered in detail, leading to an extensive discussion on robust portfolio optimization. Nonetheless, readers without prior knowledge of portfolio management or mathematical modeling should be able to follow the presentation since basic concepts are covered in each chapter. Furthermore, the main quantitative approaches are presented with MATLAB examples, allowing readers to easily implement portfolio problems in MATLAB or similar modeling software. There is an online appendix that provides the MATLAB codes presented in the chapter boxes (www.wiley.com/go/robustequitypm)\"--
Handbook of high-frequency trading and modeling in finance
Reflecting the fast pace and ever-evolving nature of the financial industry, the Handbook of High-Frequency Trading and Modeling in Finance details how high-frequency analysis presents new systematic approaches to implementing quantitative activities with high-frequency financial data. Introducing new and established mathematical foundations necessary to analyze realistic market models and scenarios, the handbook begins with a presentation of the dynamics and complexity of futures and derivatives markets as well as a portfolio optimization problem using quantum computers. Subsequently, the handbook addresses estimating complex model parameters using high-frequency data. Finally, the handbook focuses on the links between models used in financial markets and models used in other research areas such as geophysics, fossil records, and earthquake studies. The Handbook of High-Frequency Trading and Modeling in Finance also features: • Contributions by well-known experts within the academic, industrial, and regulatory fields • A well-structured outline on the various data analysis methodologies used to identify new trading opportunities • Newly emerging quantitative tools that address growing concerns relating to high-frequency data such as stochastic volatility and volatility tracking; stochastic jump processes for limit-order books and broader market indicators; and options markets • Practical applications using real-world data to help readers better understand the presented material The Handbook of High-Frequency Trading and Modeling in Finance is an excellent reference for professionals in the fields of business, applied statistics, econometrics, and financial engineering. The handbook is also a good supplement for graduate and MBA-level courses on quantitative finance, volatility, and financial econometrics. Ionut Florescu, PhD, is Research Associate Professor in Financial Engineering and Director of the Hanlon Financial Systems Laboratory at Stevens Institute of Technology. His research interests include stochastic volatility, stochastic partial differential equations, Monte Carlo Methods, and numerical methods for stochastic processes. Dr. Florescu is the author of Probability and Stochastic Processes, the coauthor of Handbook of Probability, and the coeditor of Handbook of Modeling High-Frequency Data in Finance, all published by Wiley. Maria C. Mariani, PhD, is Shigeko K. Chan Distinguished Professor in Mathematical Sciences and Chair of the Department of Mathematical Sciences at The University of Texas at El Paso. Her research interests include mathematical finance, applied mathematics, geophysics, nonlinear and stochastic partial differential equations and numerical methods. Dr. Mariani is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley. H. Eugene Stanley, PhD, is William Fairfield Warren Distinguished Professor at Boston University. Stanley is one of the key founders of the new interdisciplinary field of econophysics, and has an ISI Hirsch index H=128 based on more than 1200 papers. In 2004 he was elected to the National Academy of Sciences. Frederi G. Viens, PhD, is Professor of Statistics and Mathematics and Director of the Computational Finance Program at Purdue University. He holds more than two dozen local, regional, and national awards and he travels extensively on a world-wide basis to deliver lectures on his research interests, which range from quantitative finance to climate science and agricultural economics. A Fellow of the Institute of Mathematics Statistics, Dr. Viens is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley.