Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
988
result(s) for
"Ion Channels - agonists"
Sort by:
Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells
2015
PURPOSE: Exercise induces oxidative stress and causes adaptations in antioxidant defenses. The aim of the present study was to determine the effects of a 2-month diet supplementation with docosahexaenoic acid (DHA) on the pro-oxidant and antioxidant status of peripheral blood mononuclear cells (PBMCs) during football training and after acute exercise. METHODS: Fifteen male football players, in a randomized double-blind trial, ingested a beverage enriched with DHA or a placebo for 8 weeks. Blood samples were collected in basal conditions before and after the training period and after an acute and intense exercise. RESULTS: The training season increased the carbonyl and nitrotyrosine index but decreased the malondialdehyde (MDA) levels. Basal catalase activity decreased in both groups after 8 weeks of training, whereas glutathione peroxidase activity increased mainly in the placebo group. Protein levels of uncoupling proteins (UCP2 and UCP3) and inducible nitric oxide synthase significantly increased after the training period. Acute exercise induced redistribution in the number of circulating cells, increased the MDA levels and nitrotyrosine index, and decreased the levels of nitrate. Acute exercise also increased PBMCs reactive oxygen species (ROS) production after immune stimulation. Diet supplementation with DHA significantly increased the UCP3 levels after training and the superoxide dismutase protein levels after acute exercise, and reduced the production of ROS after acute exercise. CONCLUSION: Docosahexaenoic acid increased the antioxidant capabilities while reducing the mitochondrial ROS production in a regular football training period and reduced the oxidative damage markers in response to acute exercise.
Journal Article
A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
2019
Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.
Journal Article
Chemical activation of the mechanotransduction channel Piezo1
by
Schumacher, Andrew M
,
Huynh, Truc
,
Bandell, Michael
in
agonist
,
Animals
,
Biophysics and Structural Biology
2015
Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. Within our bodies, cells and tissues are constantly being pushed and pulled by their surrounding environment. These mechanical forces are then transformed into electrical or chemical signals by cells. This process is crucial for many biological structures, such as blood vessels, to develop correctly, and is also a key part of our senses of touch and hearing. In 2010, researchers discovered a group of ion channels—proteins embedded in the membrane that surrounds a cell—that open up when a force is applied and allow ions such as calcium, potassium, and sodium to flow. This movement of ions generates the electrical response of the cell to the applied force. However, not much is known about how these ‘Piezo’ ion channels work. To investigate this, it is important to be able to precisely control how and when the Piezo channels open. Many other ion channels are studied by using small chemical compounds to activate them, but there were none that were known to act on Piezo proteins. Syeda et al.—including some of the researchers involved in the 2010 work—screened over three million compounds for their ability to cause calcium ions to flow into human cells to try to identify chemicals that activate the Piezo channels. This revealed one promising candidate named Yoda1, which specifically activated Piezo1: a Piezo protein that had previously been linked to a role in blood vessel development in embryos. To investigate how Yoda1 activates Piezo1, Syeda et al. placed Piezo1 in an artificial cell membrane that did not contain any other cellular components. When Yoda1 was added to this set up, the Piezo1 channels opened up. This suggests that Piezo1 and Yoda1 interact in a manner that does not require additional cellular components other than a cell membrane. Separate work by Cahalan, Lukacs et al. uses Yoda1 to reveal that Piezo1 helps to control the volume of red blood cells, showing that in the future, Yoda1 could be valuable in research that investigates the roles of Piezo1.
Journal Article
Stimulation of Piezo1 by mechanical signals promotes bone anabolism
2019
Mechanical loading, such as caused by exercise, stimulates bone formation by osteoblasts and increases bone strength, but the mechanisms are poorly understood. Osteocytes reside in bone matrix, sense changes in mechanical load, and produce signals that alter bone formation by osteoblasts. We report that the ion channel Piezo1 is required for changes in gene expression induced by fluid shear stress in cultured osteocytes and stimulation of Piezo1 by a small molecule agonist is sufficient to replicate the effects of fluid flow on osteocytes. Conditional deletion of Piezo1 in osteoblasts and osteocytes notably reduced bone mass and strength in mice. Conversely, administration of a Piezo1 agonist to adult mice increased bone mass, mimicking the effects of mechanical loading. These results demonstrate that Piezo1 is a mechanosensitive ion channel by which osteoblast lineage cells sense and respond to changes in mechanical load and identify a novel target for anabolic bone therapy. Bone size and strength depend on physical activity. Increased forces on the skeleton, such as those that occur during exercise, trigger more bone formation and make bones stronger. Conversely, reduced forces, caused for example by the lack physical activity, cause bone loss and increase the risk of fractures. Bones contain cells called osteocytes. These cells sense the forces exerted on bone and orchestrate bone formation in response. Calcium channels are one type of molecule that has been proposed to help osteocytes to sense forces. Calcium channels reside in the cell membrane and can change their structure to allow calcium ions to flow into the cell. Some of them allow calcium ions into the cell in direct response to physical forces, communicating to the cell that a force has been applied. These are called mechanosensitive ion channels. Until now, however, no specific calcium channels involved in force sensing had been identified in osteocytes. Li et al. searched for calcium channels in osteocytes, and found high levels of a mechanosensitive ion channel called Piezo1. Then, Li et al. made genetically modified mice that did not have any Piezo1 in these cells. The skeleton of these mice was small and weak. Moreover, the bones of these modified mice did not respond to forces like the bones of normal mice. To demonstrate this, Li et al. applied a short bout of increased force to the leg bones of unmodified mice and to those of the Piezo1 deficient mice. After two weeks, the bones of the unmodified mice had increased in thickness, whereas the bones lacking Piezo1 had not. A separate study by Sun, Chi et al. showed similar results when Piezo1 was removed from bone cells grown in the laboratory. Finally, Li et al. tested the impact of a chemical called Yoda1 on bones. Yoda1 makes the Piezo1 channel open, thus mimicking a physical force. These experiments showed that mice treated with Yoda1 had thicker bones than untreated mice. The ability of human bone to become stronger in response to exercise decreases with age, which contributes to the development of osteoporosis. Conditions that require severely restricted exercise, such as disability or extended bedrest, also lead to bone loss. These experiments show that Piezo1 allows bone to respond to physical force, and suggest Piezo1 as a promising therapeutic target to help curtail bone loss in these conditions.
Journal Article
TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation
by
Swain, Sandip M.
,
Shahid, Rafiq A.
,
Liddle, Rodger A.
in
Acinar cells
,
Acinar Cells - drug effects
,
Acinar Cells - pathology
2020
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Journal Article
Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis
2018
Merely touching the pancreas can lead to premature zymogen activation and pancreatitis but the mechanism is not completely understood. Here we demonstrate that pancreatic acinar cells express the mechanoreceptor Piezo1 and application of pressure within the gland produces pancreatitis. To determine if this effect is through Piezo1 activation, we induce pancreatitis by intrapancreatic duct instillation of the Piezo1 agonist Yoda1. Pancreatitis induced by pressure within the gland is prevented by a Piezo1 antagonist. In pancreatic acinar cells, Yoda1 stimulates calcium influx and induces calcium-dependent pancreatic injury. Finally, selective acinar cell-specific genetic deletion of Piezo1 protects mice against pressure-induced pancreatitis. Thus, activation of Piezo1 in pancreatic acinar cells is a mechanism for pancreatitis and may explain why pancreatitis develops following pressure on the gland as in abdominal trauma, pancreatic duct obstruction, pancreatography, or pancreatic surgery. Piezo1 blockade may prevent pancreatitis when manipulation of the gland is anticipated.
Manipulation of the pancreas during surgery can induce acute pancreatitis due to zymogen activation. Here the authors show that the mechanoreceptor Piezo1 is activated by pressure and its activation leads to calcium dependent pancreatic injury whereas its inhibition is protective against pancreatitis.
Journal Article
Yoda1’s energetic footprint on Piezo1 channels and its modulation by voltage and temperature
by
Ozkan, Alper D.
,
Wijerathne, Tharaka D.
,
Lacroix, Jérôme J.
in
Animals
,
Biological Sciences
,
Biophysics and Computational Biology
2022
Piezo1 channels are essential mechanically activated ion channels in vertebrates. Their selective activation by the synthetic chemical activator Yoda1 opened new avenues to probe their gating mechanisms and develop novel pharmaceuticals. Yet, the nature and extent of Piezo1 functions modulated by this small molecule remain unclear. Here we close this gap by conducting a comprehensive biophysical investigation of the effects of Yoda1 on mouse Piezo1 in mammalian cells. Using calcium imaging, we first show that cysteine bridges known to inhibit mechanically evoked Piezo1 currents also inhibit activation by Yoda1, suggesting Yoda1 acts by energetically modulating mechanosensory domains. The presence of Yoda1 alters single-channel dwell times and macroscopic kinetics consistent with a dual and reciprocal energetic modulation of open and shut states. Critically, we further discovered that the electrophysiological effects of Yoda1 depend on membrane potential and temperature, two other Piezo1 modulators. This work illuminates a complex interplay between physical and chemical modulators of Piezo1 channels.
Journal Article
Functional agonism of insect odorant receptor ion channels
2011
In insects, odor cues are discriminated through a divergent family of odorant receptors (ORs). A functional OR complex consists of both a conventional odorant-binding OR and a nonconventional coreceptor (Orco) that is highly conserved across insect taxa. Recent reports have characterized insect ORs as ion channels, but the precise mechanism of signaling remains unclear. We report the identification and characterization of an Orco family agonist, VUAA1, using the Anopheles gambiae coreceptor (AgOrco) and other orthologues. These studies reveal that the Orco family can form functional ion channels in the absence of an odor-binding OR, and in addition, demonstrate a first-in-class agonist to further research in insect OR signaling. In light of the extraordinary conservation and widespread expression of the Orco family, VUAA1 represents a powerful new family of compounds that can be used to disrupt the destructive behaviors of nuisance insects, agricultural pests, and disease vectors alike.
Journal Article
Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions
2020
Accumulating evidence has shown that drug-target interactions (DTIs) play a crucial role in the process of genomic drug discovery. Although biological experimental technology has made great progress, the identification of DTIs is still very time-consuming and expensive nowadays. Hence it is urgent to develop
in silico
model as a supplement to the biological experiments to predict the potential DTIs. In this work, a new model is designed to predict DTIs by incorporating chemical sub-structures and protein evolutionary information. Specifically, we first use Position-Specific Scoring Matrix (PSSM) to convert the protein sequence into the numerical descriptor containing biological evolutionary information, then use Discrete Cosine Transform (DCT) algorithm to extract the hidden features and integrate them with the chemical sub-structures descriptor, and finally utilize Rotation Forest (RF) classifier to accurately predict whether there is interaction between the drug and the target protein. In the 5-fold cross-validation (CV) experiment, the average accuracy of the proposed model on the benchmark datasets of
Enzymes
,
Ion Channels
,
GPCRs
and
Nuclear Receptors
reached 0.9140, 0.8919, 0.8724 and 0.8111, respectively. In order to fully evaluate the performance of the proposed model, we compare it with different feature extraction model, classifier model, and other state-of-the-art models. Furthermore, we also implemented case studies. As a result, 8 of the top 10 drug-target pairs with the highest prediction score were confirmed by related databases. These excellent results indicate that the proposed model has outstanding ability in predicting DTIs and can provide reliable candidates for biological experiments.
Journal Article
The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels
by
Flockerzi, Veit
,
Voets, Thomas
,
Wissenbach, Ulrich
in
Biological and medical sciences
,
Capsaicin - pharmacology
,
Cell Line
2004
The mammalian sensory system is capable of discriminating thermal stimuli ranging from noxious cold to noxious heat. Principal temperature sensors belong to the TRP cation channel family, but the mechanisms underlying the marked temperature sensitivity of opening and closing (‘gating’) of these channels are unknown. Here we show that temperature sensing is tightly linked to voltage-dependent gating in the cold-sensitive channel TRPM8 and the heat-sensitive channel TRPV1. Both channels are activated upon depolarization, and changes in temperature result in graded shifts of their voltage-dependent activation curves. The chemical agonists menthol (TRPM8) and capsaicin (TRPV1) function as gating modifiers, shifting activation curves towards physiological membrane potentials. Kinetic analysis of gating at different temperatures indicates that temperature sensitivity in TRPM8 and TRPV1 arises from a tenfold difference in the activation energies associated with voltage-dependent opening and closing. Our results suggest a simple unifying principle that explains both cold and heat sensitivity in TRP channels.
Journal Article