Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
129
result(s) for
"Iridoviridae - genetics"
Sort by:
Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei)
2017
A newly discovered iridescent virus that causes severe disease and high mortality in farmed
Litopenaeus vannamei
in Zhejiang, China, has been verified and temporarily specified as shrimp hemocyte iridescent virus (SHIV). Histopathological examination revealed basophilic inclusions and pyknosis in hematopoietic tissue and hemocytes in gills, hepatopancreas, periopods and muscle. Using viral metagenomics sequencing, we obtained partial sequences annotated as potential iridoviridae. Phylogenetic analyses using amino acid sequences of major capsid protein (MCP) and ATPase revealed that it is a new iridescent virus but does not belong to the five known genera of
Iridoviridae
. Transmission electron microscopy showed that the virus exhibited a typical icosahedral structure with a mean diameter of 158.6 ± 12.5 nm (n = 30)(v-v) and 143.6 ± 10.8 nm (n = 30)(f-f), and an 85.8 ± 6.0 nm (n = 30) nucleoid. Challenge tests of
L. vannamei
via intermuscular injection, per os and reverse gavage all exhibited 100% cumulative mortality rates. The
in situ
hybridization showed that hemopoietic tissue, gills, and hepatopancreatic sinus were the positively reacting tissues. Additionally, a specific nested PCR assay was developed. PCR results revealed that
L. vannamei
,
Fenneropenaeus chinensis
, and
Macrobrachium rosenbergii
were SHIV-positive, indicating a new threat existing in the shrimp farming industry in China.
Journal Article
Description of a Natural Infection with Decapod Iridescent Virus 1 in Farmed Giant Freshwater Prawn, Macrobrachium rosenbergii
2019
Macrobrachium rosenbergii is a valuable freshwater prawn in Asian aquaculture. In recent years, a new symptom that was generally called “white head” has caused high mortality in M. rosenbergii farms in China. Samples of M. rosenbergii, M. nipponense, Procambarus clarkii, M. superbum, Penaeus vannamei, and Cladocera from a farm suffering from white head in Jiangsu Province were collected and analyzed in this study. Pathogen detection showed that all samples were positive for Decapod iridescent virus 1 (DIV1). Histopathological examination revealed dark eosinophilic inclusions and pyknosis in hematopoietic tissue, hepatopancreas, and gills of M. rosenbergii and M. nipponense. Blue signals of in situ digoxigenin-labeled loop-mediated isothermal amplification appeared in hematopoietic tissue, hemocytes, hepatopancreatic sinus, and antennal gland. Transmission electron microscopy of ultrathin sections showed a large number of DIV1 particles with a mean diameter about 157.9 nm. The virogenic stromata and budding virions were observed in hematopoietic cells. Quantitative detection with TaqMan probe based real-time PCR of different tissues in naturally infected M. rosenbergii showed that hematopoietic tissue contained the highest DIV1 load with a relative abundance of 25.4 ± 16.9%. Hepatopancreas and muscle contained the lowest DIV1 loads with relative abundances of 2.44 ± 1.24% and 2.44 ± 2.16%, respectively. The above results verified that DIV1 is the pathogen causing white head in M. rosenbergii. M. nipponense and Pr. clarkii are also species susceptible to DIV1.
Journal Article
Poly(I:C) Induces Antiviral Immune Responses in Japanese Flounder (Paralichthys olivaceus) That Require TLR3 and MDA5 and Is Negatively Regulated by Myd88
2014
Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.
Journal Article
Infectious Spleen and Kidney Necrosis Virus ORF093R and ORF102R Regulate Glutamate Metabolic Reprogramming to Support Virus Proliferation by Interacting with c-Myc
2025
Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear. Here, we indicated that c-Myc increased glutamine uptake by increasing the GLS1, glutamate dehydrogenase (GDH) and isocitrate dehydrogenase (IDH2) expression of glutamine metabolism. ISKNV ORF102R, ORF093R and ORF118L co-located with c-Myc in CPB cells. Co-IP results showed that ISKNV ORF102R and ORF093R interacted with c-Myc, while ORF118L did not interact with c-Myc. The expression levels of c-Myc, GLS1 and IDH2 were increased in ISKNV ORF093R expression cells, and the mRNA and protein levels of GLS1 were upregulated in ISKNV 102R-expressing cells. These results indicated that ISKNV reconstructed glutamine metabolism to satisfy the energy and macromolecule requirements for virus proliferation by ORF093R and ORF102R interacting with c-Myc, which provides the foundation for innovative antiviral strategies.
Journal Article
Dissection of Emerging Shrimp Viruses Through Scientometric Assessment: Insights into Infectious Myonecrosis Virus (IMNV) and Decapod Iridescent Virus 1 (DIV1)
by
Kiruba-Sankar, Rajendran
,
Praveenraj, Jayasimhan
,
Rathinam, Rajesh Bharathi
in
Animals
,
Aquaculture
,
Bibliometrics
2025
Viral diseases pose significant threats to global aquaculture, particularly in shrimp farming, which has suffered substantial economic losses due to pathogens such as Infectious Myonecrosis Virus (IMNV) and Decapod Iridescent Virus 1 (DIV1). This study presents a comprehensive scientometric analysis of the research landscape, knowledge structure, and emerging trends related to these two pivotal critical shrimp viruses. Using bibliometric data extracted from the Scopus database, we evaluated publication trends, key contributing countries, institutions, authors, co-authorship networks, and keyword co-occurrence patterns. IMNV-related research demonstrated more established collaborative networks, whereas DIV1 studies have surged only recently, reflecting its status as an emerging pathogen and underscoring the urgent need for intensified research efforts. Thematic clusters reveal molecular characterization, host–pathogen interactions, and viral diagnostics as central areas of focus. This analysis identifies research hotspots, collaborative gaps, and leading contributors, offering guidance for future shrimp disease research. However, challenges persist, including limited cross-border collaboration and the underrepresentation of certain regions. Our findings offer valuable insights for researchers, funding agencies, and policymakers, highlighting the opportunities for interdisciplinary and international collaboration to mitigate the impact of these viral threats in aquaculture systems.
Journal Article
Molecular characterization of lymphocystis disease virus in Indian glass fish: first report from the Andaman Islands
2024
Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish’s skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.
Journal Article
Genotypic Characterization of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Southeast Asian Aquaculture
2023
Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104–4.58 × 109 ISKNV genome copies mg−1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92–105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.
Journal Article
Transcriptomic Analysis of the Spleen from Asian Seabass (Lates calcarifer) Infected with Infectious Spleen and Kidney Necrosis Virus
2025
Infectious spleen and kidney necrosis virus (ISKNV) is an emerging viral pathogen with an expanding host range, posing a significant threat to economically important fish species. In this study, we isolated the ISKNV strain responsible for disease outbreaks in Asian seabass (Lates calcarifer) and analyzed the transcriptomic profile of spleen tissues from experimentally infected fish. The phylogenetic analysis confirmed that the virus belongs to clade I of ISKNV. Next-generation sequencing identified differentially expressed genes, providing a comprehensive overview of the transcriptional landscape in the spleen of ISKNV-infected fish. The pathway analysis revealed complex host–virus interactions, impacting immune regulation, endocytosis, cell communication, cell cycle arrest, and programmed cell death. To further investigate these interactions, we analyzed relevant pathways in the Reactome database for Asian seabass, humans, and zebrafish, constructed a protein–protein interaction (PPI) network using STRING database, and identified hub genes using six different algorithms. This analysis revealed 69 key genes, including 41 hub genes and 28 key genes that connect different pathways or clusters within the PPI network. These findings provide new insights into the molecular mechanisms driving ISKNV infection in Asian seabass. Future research should focus on elucidating the regulatory functions of these key genes and their roles in ISKNV pathogenesis.
Journal Article
Viruses Infecting the European Catfish (Silurus glanis)
2021
In aquaculture, disease management and pathogen control are key for a successful fish farming industry. In past years, European catfish farming has been flourishing. However, devastating fish pathogens including limiting fish viruses are considered a big threat to further expanding of the industry. Even though mainly the ranavirus (Iridoviridea) and circovirus (Circoviridea) infections are considered well- described in European catfish, more other agents including herpes-, rhabdo or papillomaviruses are also observed in the tissues of catfish with or without any symptoms. The etiological role of these viruses has been unclear until now. Hence, there is a requisite for more detailed information about the latter and the development of preventive and therapeutic approaches to complete them. In this review, we summarize recent knowledge about viruses that affect the European catfish and describe their origin, distribution, molecular characterisation, and phylogenetic classification. We also highlight the knowledge gaps, which need more in-depth investigations in the future.
Journal Article
Complete genome sequence and analysis of a novel lymphocystivirus detected in whitemouth croaker (Micropogonias furnieri): lymphocystis disease virus 4
by
Puentes Rodrigo
,
Kaján, Győző L
,
Doszpoly Andor
in
Amino acid sequence
,
Genetic analysis
,
Genomes
2020
A novel lymphocystivirus causing typical signs of lymphocystis virus disease in whitemouth croaker (Micropogonias furnieri) on the coast of Uruguay was detected and described recently. Based on genetic analysis of some partially sequenced core genes, the virus seemed to differ from previously described members of the genus Lymphocystivirus. In this study, using next-generation sequencing, the whole genome of this virus was sequenced and analysed. The complete genome was found to be 211,086 bp in size, containing 148 predicted protein-coding regions, including the 26 core genes that seem to have a homologue in every iridovirus genome sequenced to date. Considering the current species demarcation criteria for the family Iridoviridae (genome organization, G+C content, amino acid sequence similarity, and phylogenetic relatedness of the core genes), the establishment of a novel species (“Lymphocystis disease virus 4”) in the genus Lymphocystivirus is suggested.
Journal Article