Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Isohalines"
Sort by:
Saltwater Intrusion and Emergency Freshwater Release in the Changjiang River Estuary Under Extreme Drought Conditions
Releasing freshwater from upstream reservoirs is a reasonable strategy to mitigate saltwater intrusion, however, its effectiveness may vary depending on weather events. Previous studies have primarily examined the effects on saltwater intrusion of seasonal regulation in reservoir discharge, with a limited attention given to the synoptic scale. This study applied the ECOM‐si to quantitatively analyze the impacts of the October 2022 emergency freshwater release on saltwater intrusion, also elucidating the mechanisms by which cold fronts (defined as northerly winds with speeds exceeding 10 m/s) impaired the effects of that release. The release reduced landward advective salt flux, shifting the 0.45 psu isohaline 17 km downstream during the neap tide period. On October 21, the salinity at the Qingcaosha Reservoir (QCSR) intake point fell to 0.45 psu, creating a 12.75‐hr window for freshwater intake. Cold fronts greatly diminished the effectiveness of freshwater release, shortening the water intake period by 24.14 hr. During the cold front period, northerly winds induced landward Ekman transport, creating a horizontal recirculation pattern with inflow through the North Channel (NC) and outflow through the South Channel (SC). The net landward water flux per unit width in the NC reached −1 m2/s. During the first cold front, steady shear salt flux contributed most significantly, with a magnitude of −70 ton/s, while advective salt flux dominated during the second cold front, reaching −239 ton/s. Without the cold fronts, the potential water intake time could have increased to 36.89 hr.
A Universal Law of Estuarine Mixing
A universal law of estuarine mixing is derived here, combining the approaches of salinity coordinates, Knudsen relations, total exchange flow, mixing definition as salinity variance loss, and the mixing–exchange flow relation. As a result, the long-term average mixing within an estuarine volume bounded by the isohaline of salinity S amounts to M ( S ) = S 2 Q r , where Q r is the average river runoff into the estuary. Consequently, the mixing per salinity class is m ( S ) = ∂ S M ( S ) = 2 SQ r , which can also be expressed as the product of the isohaline volume and the mixing averaged over the isohaline. The major differences between the new mixing law and the recently developed mixing relation based on the Knudsen relations are threefold: (i) it does not depend on internal dynamics of the estuary determining inflow and outflow salinities (universality), (ii) it is exactly derived from conservation laws (accuracy), and (iii) it calculates mixing per salinity class (locality). The universal mixing law is demonstrated by means of analytical stationary and one-dimensional and two-dimensional numerical test cases. Some possible consequences for the salinity distribution in real estuaries are briefly discussed. Since the mixing per salinity class only depends on the river runoff and the chosen salinity, and not on local processes at the isohaline, low-mixing estuaries must have large isohaline volumes and vice versa.
Salinity Mixing and Diahaline Exchange Flow in a Large Multi-Outlet Estuary with Islands
The relationship between the salinity mixing, the diffusive salt transport, and the diahaline exchange flow is examined using salinity coordinates. The diahaline inflow and outflow volume transports are defined in this study as the integral of positive and negative values of the diahaline velocity. A numerical model of the Pearl River Estuary (PRE) shows that this diahaline exchange flow is analogous to the classical concept of estuarine exchange flow with inflow in the bottom layers and outflow at the surface. The inflow and outflow magnitudes increase with salinity, while the net transport equals the freshwater discharge Q r after sufficiently long temporal averaging. In summer, intensified salinity mixing mainly occurs in the surface layers and around the islands. The patchy distribution of intensified diahaline velocity suggests that the water exchange through an isohaline surface can be highly variable in space. In winter, the zones of intensification of salinity mixing occur mainly in deep channels. Apart from the impact of freshwater transport from rivers, the transient mixing is also controlled by an unsteadiness term due to estuarine storage of salt and water volume. In the PRE, the salinity mixing and exchange flow show substantial spring–neap variation, while the universal law of estuarine mixing m = 2 SQ r (with m being the sum of physical and numerical mixing per salinity class S ) holds over longer averaging period (spring–neap cycle). The correlation between the patterns of surface mixing, the vorticity, and the salinity gradients indicates a substantial influence of islands on estuarine mixing in the PRE.
Local Mixing Determines Spatial Structure of Diahaline Exchange Flow in a Mesotidal Estuary: A Study of Extreme Runoff Conditions
Salt mixing enables the transport of water between the inflow and outflow layers of estuarine circulation and therefore closes the circulation by driving a diahaline exchange flow. A recently derived universal law links the salt mixing inside an estuarine volume bounded by an isohaline surface to freshwater discharge: it states that on long-term average, the area-integrated mixing across the bounding isohaline is directly proportional to the freshwater discharge entering the estuary. However, even though numerous studies predict that periods of extreme discharge will become more frequent with climate change, the direct impact of such periods on estuarine mixing and circulation has yet to be investigated. Therefore, this numerical modeling study focuses on salinity mixing and diahaline exchange flows during a low-discharge and an extreme high-discharge period. To this end, we apply a realistic numerical setup of the Elbe estuary in northern Germany, using curvilinear coordinates that follow the navigational channel. This is the first time the direct relationship between diahaline exchange flow and salt mixing as well as the spatial distribution of the diahaline exchange flow is shown in a realistic tidal setup. The spatial distribution is highly correlated with the local mixing gradient for salinity, such that inflow occurs near the bottom at the upstream end of the isohaline. Meanwhile, outflow occurs near the surface at its downstream end. Last, increased vertical stratification occurs within the estuary during the high-discharge period, while estuarine-wide mixing strongly converges to the universal law for averaging periods of the discharge event time scale.
Exploring the Role of the “Ice–Ocean Governor” and Mesoscale Eddies in the Equilibration of the Beaufort Gyre: Lessons from Observations
Observations of Ekman pumping, sea surface height anomaly, and isohaline depth anomaly over the Beaufort Gyre are used to explore the relative importance and role of (i) feedbacks between ice and ocean currents, dubbed the “ice–ocean governor,” and (ii) mesoscale eddy processes in the equilibration of the Beaufort Gyre. A two-layer model of the gyre is fit to observations and used to explore the mechanisms governing the gyre evolution from the monthly to the decennial time scale. The ice–ocean governor dominates the response on interannual time scales, with eddy processes becoming evident only on the longest, decadal time scales.
Asymmetrically Stratified Beaufort Gyre: Mean State and Response to Decadal Forcing
Recent progress in understanding Beaufort Gyre (BG) dynamics reveals an important role of ice‐ocean stress in stabilizing BG freshwater content (FWC) over seasonal to interannual timescales. But how the BG's stratification and FWC respond to surface forcing over decadal timescales has not been fully explored. Using a global ocean‐sea ice model, we partition the BG into upper, middle (halocline), and lower (thermocline) layers and perform a volume budget analysis over 1948–2017. We find that the BG's asymmetric geometry (with steep and tight isohalines over continental slopes relative to the deep basin) is key in determining the mean volume transport balance. We further find that a net Ekman suction during 1983–1995 causes the upper and middle layers to deflate isopycnally, while an enhanced Ekman pumping during 1996–2017 causes these layers to inflate both isopycnally and diapycnally, the latter via anomalous flux from the upper to the middle layer. Plain Language Summary The Beaufort Gyre (BG) has increased its liquid freshwater content (FWC) by 40% in the past two decades. If released and transported downstream to the subpolar North Atlantic Ocean, the excess water might affect the ocean circulation via suppression of deep‐water formation. However, which layer is responsible for BG freshwater accumulations and releases over decadal timescales and the corresponding physical processes remain unclear, hampering our attempts to make future predictions. Here we use an ocean‐sea ice model to explore such changes in its three characteristic layers (upper mixed‐layer water, Pacific Water in the middle layer, and Atlantic Water in the lower layer). We find that the asymmetry of the BG, which has been simplified as a symmetric bowl shape in most previous studies, is important in determining the BG's layered mean state. Over decadal timescales, changes in BG volume are controlled by annual‐mean Ekman pumping/suction resulting from combined wind and ice‐ocean stresses. This study emphasizes the role of asymmetric geometry in determining the BG mean volume balance. It also explores the role of mean flow across the gyre's lateral boundaries in regulating BG's volume and FWC over decadal timescales. Key Points The Beaufort Gyre's asymmetric geometry is the key to explain a net mean lateral outflow in the upper layer, despite Ekman convergence In the mean, the Gyre is fed by a northeast inflow into its middle layer, with outflow to its southwest from both upper and middle layers Deflation/inflation processes are asymmetric in response to anomalous Ekman suction/pumping on decadal timescales
Temporal changes of the Oyashio water distribution east of Japan under the changing climate: development of an objective evaluation method and its application
The Oyashio, a southern part of the western boundary current in the North Pacific subarctic gyre, carries cold and fresh seawater with abundant nutrients southward from the high-latitude, influencing regional climate in the East Asia and marine environment in the western mid-latitude North Pacific. Previously, a distribution of the Oyashio water has been evaluated by empirical temperature thresholds; for example, in spring (March–May) when the Oyashio intrudes southward into the east of Japan, the Oyashio water is defined at 100-m depth as ≤ 5 °C. However, this method is not necessarily adequate under the changing climate because upper ocean temperature may change over time due to some causes unrelated to cold water transport by the Oyashio (e.g., surface heat fluxes). In this study, we developed an objective method to evaluate the Oyashio water distribution applicable under the changing climate with a focus on a thermohaline front located at the warm- and salty-side boundary of the Oyashio water. We identified isohalines at 100-m depth best corresponding to the thermohaline front in each month and used them as the Oyashio water threshold. Using the developed method, we further investigated the springtime Oyashio water distribution east of Japan (in the North Pacific south of 43°N, 141–148°E). The area of the Oyashio water shows inter-annual variation and significant long-term decrease. It was suggested that these temporal variation and change reflect changes in a distribution of anti-cyclonic meso-scale eddies off Hokkaido, which block the southward Oyashio intrusion into the east of Japan.
A Model Study of the Salish Sea Estuarine Circulation
A realistic hindcast simulation of the Salish Sea, which encompasses the estuarine systems of Puget Sound, the Strait of Juan de Fuca, and the Strait of Georgia, is described for the year 2006. The model shows moderate skill when compared against hydrographic, velocity, and sea surface height observations over tidal and subtidal time scales. Analysis of the velocity and salinity fields allows the structure and variability of the exchange flow to be estimated for the first time from the shelf into the farthest reaches of Puget Sound. This study utilizes the total exchange flow formalism that calculates volume transports and salt fluxes in an isohaline framework, which is then compared to previous estimates of exchange flow in the region. From this analysis, residence time distributions are estimated for Puget Sound and its major basins and are found to be markedly shorter than previous estimates. The difference arises from the ability of the model and the isohaline method for flux calculations to more accurately estimate the exchange flow. In addition, evidence is found to support the previously observed spring–neap modulation of stratification at the Admiralty Inlet sill. However, the exchange flow calculated increases at spring tides, exactly opposite to the conclusion reached from an Eulerian average of observations.
Effects of step salinity gradients on salmon lice larvae behaviour and dispersal
In trying to deal with the problematic salmon louse Lepeophtheirus salmonis in salmon aquaculture, strategies to better prevent infestations are gaining traction. Successful prevention requires an accurate understanding of the environmental influences that alter the distribution of the planktonic stages of lice in the water column in space and time. Here, we tested the salinity preferences of nauplii and copepodid larval stages using step salinity column experiments. Under consistent temperature and lighting conditions, we created step gradients using a bottom layer of full salinity (34.7 ppt), with an upper layer of equal or lower salinity (~34.7 to 16 ppt). Lice entered the column in the lower layer and dispersed for 1 h before their position was recorded. Both nauplii and copepodids increasingly avoided the overlying layers as they became more brackish. However, the strength of avoidance differed between nauplii and copepodids. Nauplii almost completely avoided salinities below 30 ppt. For copepodids, there was a more gradual decline in the proportion preferring the less saline overlying layer, and the presence of some individuals occurred even at 16 to 20 ppt. Both stages aggregated at or just below the halocline, with no aggregation evident in isohaline columns at the same depth. For nauplii, clustering within the halocline was particularly strong. When integrated into a sea lice dispersal model, the new salinity preferences we determined markedly altered dispersal patterns in scenarios when salinity gradients were present. Our results have implications for the mapping of salmon lice larval behaviour and dispersal, with benefits for aquaculture planning and management.
Calculating Estuarine Exchange Flow Using Isohaline Coordinates
A method for calculating subtidal estuarine exchange flow using an isohaline framework is described, and the results are compared with those of the more commonly used Eulerian method of salt flux decomposition. Concepts are explored using a realistic numerical simulation of the Columbia River estuary. The isohaline method is found to be advantageous because it intrinsically highlights the salinity classes in which subtidal volume flux occurs. The resulting expressions give rise to an exact formulation of the time-dependent Knudsen relation and may be used in calculation of the saltwater residence time. The volume flux of the landward transport, which can be calculated precisely using the isohaline framework, is of particular importance for problems in which the saltwater residence time is critical.